Skip to main content

Uncertainty analysis in the financial assessment of an integrated management system for restaurant and catering waste in Spain



The goal of this study is to analyze the economic performance of an alternative system for waste management proposed by the European Integral-b project. Its aim is to treat both used cooking oil (UCO) and solid organic waste (SOW) from the hospitality sector by biodiesel production and anaerobic digestion, respectively. A cogeneration engine adapted to use glycerol as a fuel is implemented. These results complement others from a previous life cycle assessment (LCA).


The system proposed (scenario A) is compared to a system consisting of average waste management options (scenario B) by means of life cycle costing (LCC). The functional unit (FU) is the amount of UCO and SOW from hospitality produced per person and year in Spain. The profits generated by the FU under the two scenarios are calculated from a financial point of view. It is assumed that co-products from both scenarios translate into revenues for waste managers. Scenario analysis assesses different rates for the electricity output, subject to market regulations, and different levels of UCO availability. Monte Carlo simulations are carried out to analyze parameter and price uncertainty.

Results and discussion

The profits in all the scenarios are negative, and those of scenario A are lower than those of scenario B under all the scenario formulations. Scenario A generates greater income than scenario B but also higher expenses, mainly due to SOW collection. The new electricity rates are detrimental for the financial performance of the Integral-b since the overall profits mostly depend on the sale of electricity. Readier UCO availability benefits both scenarios to a similar extent. The uncertainty analysis reinforces the comparative results, although there is some likelihood scenario A will generate greater profits. The sensitivity analysis allows for the key parameters to be identified in order to optimize the process further. Possible trade-offs between the LCC and LCA results have been evaluated.


Results from the financial analysis show that the Integral-b process delivers greater losses as compared to a reference scenario. Both generate net costs, meaning that stakeholders have to finance the functions provided. Uncertainty in the electricity regulations constitutes an obstacle for such projects as these to be implemented. As in LCA, the definition of the system boundaries and FU is critical in LCC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Anaerobic digestion


Combined heat and power




European Union


Economic value added


Functional unit


Gross domestic product


Greenhouse gas


Global warming


Capital, labor, energy, material inputs and purchased services


Life cycle assessment


Life cycle costing


Municipal solid waste


Program evaluation and review technique


Solid organic waste


Used cooking oil


Waste Framework Directive


  • Albarelli JQ, Santos DT, Holanda MR (2011) Energetic and economic evaluation of waste glycerol cogeneration in Brazil. Braz J Chem Eng 28(4):691–698

    CAS  Article  Google Scholar 

  • Álvarez de la Puente JM (2007) Estudio de mercado de los compost urbanos en España. Universidad de Huelva, Huelva (Spain). Accessed at: (23th January 2015)

  • AMCRSPP (2013) Associació de Municipis Catalans per a la Recollida Selectiva Porta a Porta. Balance económico de la recogida de residuos puerta a puerta y en contenedores para los entes locales y propuestas de optimización. Accessed at: (21st March 2015)

  • Arena U, Mastellone ML, Perugini F (2003) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96:207–222

    CAS  Article  Google Scholar 

  • BOE (2007) Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial. Ministerio de la Presidencia, Gobierno de España, Madrid (Spain). Accessed at: (15th March 2015)

  • BOE (2011) Orden IET/3586/2011, de 30 de diciembre, por la que se establecen los peajes de acceso a partir de 1 de enero de 2012 y las tarifas y primas de las instalaciones del régimen especial. Ministerio de la Presidencia, Gobierno de España, Madrid (Spain). Accessed at: (15th March 2015)

  • BOE (2014a) Orden IET/1045/2014, de 16 de junio, por la que se aprueban los parámetros retributivos de las instalaciones tipo aplicables a determinadas instalaciones de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos. Ministerio de la Presidencia, Gobierno de España, Madrid (Spain). Accessed at: (15th March 2015)

  • BOE (2014b) Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos. Ministerio de la Presidencia, Gobierno de España, Madrid (Spain). Accessed at: (14th March 2015)

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56

    CAS  Article  Google Scholar 

  • Carlsson Reich M (2005) Economic assessment of municipal waste management systems. Case studies using a combination of life cycle assessment (LCA) and life cycle costing (LCC). J Cleaner Prod 13:253–263

    Article  Google Scholar 

  • Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123

    CAS  Article  Google Scholar 

  • Ciroth A (2009) Cost data quality considerations for eco-efficiency measures. Ecol Econ 68:1583–1590

    Article  Google Scholar 

  • Coelli TJ, Prasada Rao DS, O’Donnell CJ, Battese GS (2005) An introduction to efficiency and productivity analysis. In: Springer, 2nd edn. Springer-Verlag US, New York (United States). eBook ISBN: 978-0-387-25895-9

  • DGPT Valdemingómez (2012) Memoria de actividades. Dirección General del Parque Tecnológico de Valdemingómez. Madrid (Spain)

  • Engström R, Carlsson-Kanyama A (2004) Food losses in food service institutions. Examples from Sweden. Food Policy 29:203–213

    Article  Google Scholar 

  • Eriksson O, Carlsson Reich M, Frostell B, Björklund A, Assefa G, Sundqvist JO, Thyselius L (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13(3):241–252

    Article  Google Scholar 

  • Eriksson O, Bisaillon M, Haraldsson M, Sundberg J (2014) Integrated waste management as a mean to promote renewable energy. Renew Energy 61:38–42

    Article  Google Scholar 

  • Escobar N, Ribal FJ, Rodrigo A, Clemente G, Pascual A, Sanjuán N (2015) Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain. Int J Life Cycle Assess 20:244–262

    Article  Google Scholar 

  • European Commission (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union. Luxembourg (Luxembourg)

  • Eurostat (2012) Landfill still accounted for nearly 40% of municipal waste treated in the EU27 in 2010. Accessed at: (28th January 2014)

  • Eurostat (2013) In 2011, 40% of treated municipal waste was recycled or composted, up from 27% in 2001. Accessed at: (28th January 2014)

  • FAO (2013) Food wastage footprint-impacts on natural resources. Food and Agriculture Organization, Rome (Italy). ISBN 978-92-5-107752-8

  • Finnveden G, Björklund A, Moberg Å, Ekvall T (2007) Environmental and economic assessment methods for waste management decision-support: possibilities and limitations. Waste Manag Res 25(3):263–269

    Article  Google Scholar 

  • Frischknecht R, Althaus HJ, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 12(1):7–17

    CAS  Google Scholar 

  • Gholami Z, Abdullah AZ, Lee KT (2014) Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew Sustain Energy Rev 39:327–341

    CAS  Article  Google Scholar 

  • Giugliano M, Cernuschi S, Grosso M, Rigamonti L (2011) Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Manag 31(9):2092–2101

    Article  Google Scholar 

  • Gluch P, Baumann H (2004) The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Build Env 39(5):571–580

    Article  Google Scholar 

  • Greenpeace (2010) La incineración de residuos en cifras. Análisis socio-económico de la incineración de residuos municipales en España Julio 2010. Accessed at: (23rd March 2015)

  • Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49:32–48

    Article  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U (2011) Global food losses and food waste. Extent, causes and prevention. Food and Agriculture Organization, Rome (Italy)

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678

    CAS  Article  Google Scholar 

  • Heijungs R, Settanni E, Guinée J (2013) Toward a computational structure for life cycle sustainability analysis: unifying LCA and LCC. Int J Life Cycle Assess 18(9):1722–1733

    CAS  Article  Google Scholar 

  • IDAE (2011) Instituto para la Diversificación y el Ahorro de Energía. Plan de Energías Renovables 2011-2020. Ministerio de Industria, Energía y Turismo, Madrid (Spain). Accessed at: (23rd September 2014)

  • INE (2015) Salarios y costes laborales. Instituto Nacional de Estadística, Madrid (Spain). Accessed at: (17th March 2015)

  • Iriarte A, Gabarrell X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914

    Article  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value‐added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    CAS  Article  Google Scholar 

  • Kim MH, Song YE, Song HB, Kim JW, Hwang SJ (2011) Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea. Waste Manag 31(9):2112–2120

    Article  Google Scholar 

  • Kleyner A, Sandborn P (2008) Minimizing life cycle cost by managing product reliability via validation plan and warranty return cost. Int J Prod Econ 112(2):796–807

    Article  Google Scholar 

  • Luo L, Van Der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sustain Energy Rev 13(6):1613–1619

    CAS  Article  Google Scholar 

  • MAGRAMA (2013a) Spanish Strategy “More food, less waste”. Program to reduce food loss and waste and maximize the value of discarded food. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid (Spain)

  • MAGRAMA (2013b) Gestión de biorresiduos de competencia municipal. Guía para la implantación de la recogida separada y tratamiento de la fracción orgánica. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid (Spain)

  • Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home full scale. Waste Manag 30:983–994

    Article  Google Scholar 

  • MINETUR (2012) Precios de carburantes y combustibles. Datos de diciembre 2012. Ministerio de Industria, Energía y Turismo, Madrid (Spain). Accessed at: (11th February 2015)

  • Muñoz Colomina CI, Cano Montero EI, Chamizo González J (2011) Una propuesta integradora de costes, indicadores y medioambiente. El caso de los residuos sólidos urbanos en Madrid. Presup Gasto Público 65:159–176

    Google Scholar 

  • Muñoz-Cidad C, Sosvilla S (2012) Informe económico 2011. Federación Española de Industrias de la Alimentación y Bebidas (FIAB). ISBN 978-84-695-3508-0. Universidad Complutense de Madrid, Madrid (Spain)

  • Nakamura S, Kondo Y (2006) A waste input–output life-cycle cost analysis of the recycling of end-of-life electrical home appliances. Ecol Econ 57(3):494–506

    Article  Google Scholar 

  • Noori M, Kucukvar M, Tatari O (2013) A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. Int J Sustain Energy, (ahead-of-print), pp 1-16

  • Noori M, Tatari O, Nam B, Golestani B, Greene J (2014) A stochastic optimization approach for the selection of reflective cracking mitigation techniques. Transp Res Part A: Policy Pract 69:367–378

    Google Scholar 

  • Norris GA (2001) Integrating life cycle cost analysis and LCA. Int J Life Cycle Assess 6(2):118–120

    Google Scholar 

  • NRDC (2012) Wasted: how America is losing Up to 40 percent of its food from farm to fork to landfill. Natural Resources Defense Council (NRDC), New York (United States)

  • Palisade Corporation (2009) Guide to using @RISK. Risk analysis and simulation add-in for Microsoft® Excel, version 5.5. Ithaca, NY (United States)

  • Posada JA, Rincón LE, Cardona CA (2012) Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem. Bioresource Technol 111:282–293

    CAS  Article  Google Scholar 

  • Rodrigo A, Martínez L, Hag-Omer N, Miguel E (2011) Proyecto Integral-b: sistema de producción conjunta y sostenible de biodiesel y biogás a partir de residuos orgánicos del canal HORECA e industria alimentaria. Rev Tec de Medio Ambient Retema 149:26–31

    Google Scholar 

  • Schmidt WP (2003) Life cycle costing as part of design for environment environmental business cases. Int J Life Cycle Assess 8(3):167–174

    Article  Google Scholar 

  • Silalertruksa T, Bonnet S, Gheewala SH (2012) Life cycle costing and externalities of palm oil biodiesel in Thailand. J Clean Prod 28:225–232

    CAS  Article  Google Scholar 

  • Siles López JA, Martín Santos MA, Chica Pérez AF, Martín Martín A (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour Technol 100(23):5609–5615

    Article  Google Scholar 

  • Thompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22(2):261–265

    Article  Google Scholar 

  • WRAP (2015) Strategies to achieve economic and environmental gains by reducing food waste. Waste & Resources Action Programme, Banbury (United Kingdom). ISBN: 978-1-84405-473-2

  • Zhang Y, White MA, Colosi LM (2013) Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production. Bioresour Technol 130:486–494

    CAS  Article  Google Scholar 

Download references


The authors acknowledge all the Integral-b partners and also the Generalitat Valenciana for providing the funds for N. Escobar’s research contract (ACIF/2010/200) and for the financial support under the project PrometeoII/2014/005.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Neus Escobar.

Additional information

Responsible editor: Guido W. Sonnemann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escobar, N., Ribal, J., Clemente, G. et al. Uncertainty analysis in the financial assessment of an integrated management system for restaurant and catering waste in Spain. Int J Life Cycle Assess 20, 1491–1510 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Hospitality
  • Life cycle costing
  • Monte Carlo
  • Organic waste
  • Spain
  • Uncertainty
  • Used cooking oil
  • Waste management