Skip to main content

Advertisement

Log in

Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

As most of the impact categories modelled in Life Cycle (Impact) Assessment, land use is influenced by an immense number of different impacts forming a complex interaction network. At present, there is no common consensus on the best practice for quantification of land use in LCA. However, land use and its consequences for biodiversity and ecosystem services are currently subject to intense public debate. Here, we review relevant methodology proposed to date with special reference to the hemeroby concept to identify a consistent method that captures the complexity of land use without oversimplification and loss of crucial information.

Methods

The definition of the safeguard subject is of vital importance and predetermines the framework of all methods and requirements for a reliable impact indicator. We selected naturalness as the safeguard subject and identified the hemeroby concept as the most appropriate approach for quantification. The hemeroby concept is particularly well suited for a nuanced assessment of different types of land use management.

Results

With the application of a system of seven ordinal classes, the diversity of naturalness in forestry and agricultural production systems can be adequately characterised. The applicability of the classification system of the hemeroby concept was reviewed and aspects in need of further development and method refinement were identified. Furthermore, the hemeroby concept was compared to other common concepts for the integration of land use into LCIA.

Discussion

The hemeroby concept was identified as an appropriate approach to quantify the safeguard subject naturalness as an LCIA indicator. In addition, it addresses subjects like biodiversity and intact ecosystems. Characterising the quality of utilised land by classes encompassing ranges on an ordinal scale offers considerable merits in comparison with single value systems on a cardinal scale. Such systems tend to oversimplify the highly complex variable land use by assuming a single quantifiable ecological indicator (e.g. soil carbon content or relative α-biodiversity) as representative proxy. In contrast to this, the hemeroby concept offers an approach that is able to retain sufficient complexity of the information available for a particular area, yet condense this information so that it may be modelled for LCA purposes without loss of crucial data.

Conclusions

Among all the methods currently available for the quantification of land use, the hemeroby concept is the most promising in terms of practicality of the actual method and quality of the output data. The classification into hemeroby classes is superior at capturing the complexity of land use. The method has been applied successfully in the area of European forests and agriculture. However, global availability of spatial hemeroby data and their compatibility with the criteria stipulated here needs to be evaluated and further developed as necessary. Other approaches focus on a different safeguard subject, thus narrowing the scope of land use as an impact indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Endpoint indicators aim to illustrate the entire causal chain from the emission to the actual final harmful effect. Midpoint indicators are located between emission and final harmful effect. Thus, they are more closely correlated with LCI results. Ideally, midpoint indicators model the primary impact.

  2. Cardinal scale (or metric scale): a scale to distinguish discrete and continuous data, the magnitude of the distance between two values may be justified with logical arguments. Ordinal scale: distinction into qualitative criteria to establish rankings such as greater, smaller, more, less, etc. The distance between the individual classes is not numerically defined.

  3. Definition of composite indicator please see OECD: http://stats.oecd.org/glossary/detail.asp?ID=6278

  4. According to UNEP (2014), 2 % of global land area were developed in 2012. Assuming another percent of devastated area, the total class VII amounts to 3 % For comparison: Within the EU, 8.8 % of the land area is developed (land used for residential, commercial and industrial purposes) http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Land_cover_and_land_use_statistics_at_regional_level#More_than_8.8.C2.A0.2.5_of_EU_land_used_for_residential.2C_commercial_and_industrial_purposes

  5. Without human intervention, nature would obviously not establish fields for agricultural purposes, but return to the final successional stage depending on the biome, e.g. via ruderal communities and forest succession to mature forest.

References

  • Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390

    Article  Google Scholar 

  • Baitz M (2002) Die Bedeutung der funktionsbasierten Charakterisierung von Flächen-Inanspruchnahmen in industriellen Prozesskettenanalysen: Ein Beitrag zur ganzheitlichen Bilanzierung. Dissertation. Berichte aus der Umwelttechnik. Aachen: Institut für Kunststoffprüfung und Kunststoffkunde, Universität Stuttgart: Shaker Verlag

  • Baitz M, Fehrenbach H, Giegrich J, Kreißig J, Schweinle J (2000) Verifizierung verschiedener Methoden zur Wirkungsabschätzung des Wirkkriteriums Naturrauminanspruchnahme / Landnutzung / Landverbrauch. On behalf of Deutsche Gesellschaft für Holzforschung (DGfH), München

  • Beck T, Bos U, Wittstock B, Baitz M, Fischer M, Sedlbauer K (2010) LANCA—land use indicator value calculation in life cycle assessment. Fraunhofer, Stuttgart

    Google Scholar 

  • BfN (2014) Erfassungsanleitung für den HNV-Farmland-Indikator. Version 5. http://www.bfn.de/fileadmin/MDB/documents/themen/monitoring/Erfassungsanleitung_HNV_V5_2014.pdf

  • BfN (2014a) Naturbewusstsein 2013 - Bevölkerungsumfrage zu Natur und biologischer Vielfalt; F + E-Vorhaben 3513 82 0300; durchgeführt durch die SINUS GmbH Heidelberg; Bonn 2014. http://www.bfn.de/fileadmin/MDB/documents/themen/gesellschaft/Naturbewusstsein/Naturbewusstsein_2013.pdf

  • BMU (2010) Indikatorenbericht 2010 zur Nationalen Strategie zur biologischen Vielfalt; Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) – 2010. http://www.bfn.de/fileadmin/MDB/documents/themen/monitoring/Indikatorenbericht-2010_NBS_Web.pdf

  • Brandão M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18(6):1243–1252

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7(6):339–348

    Google Scholar 

  • Carus M, Raschka A, Fehrenbach H, Rettenmaier N, Dammer L, Köppen S, Thöne M, Dobroschke S, Diekmann L, Hermann A, Hennenberg K, Essel R, Piotrowski S, Detzel A, Keller H, Kauertz B, Gärtner G, Reinhardt J (2014) Ökologische Innovationspolitik - Mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse; UBA Texte 01/2014. Dessau-Roßlau, Germany

    Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  • EC (2006) Commission Regulation (EC) No 1974/2006 of 15 December 2006 laying down detailed rules for the application of Council Regulation (EC) No 1698/2005 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD)

  • Electris C, Raskin P, Rosen R, Stutz J (2009) The century ahead: four global scenarios. Technical documentation. Tellus Institute, Boston

    Google Scholar 

  • Fehrenbach H (2000) Operationalisierung der Wirkungskategorie Naturraumbeanspruchung unter besonderer Berücksichtigung landwirtschaftlich genutzter Flächen; Working paper of IFEU, Heidelberg. https://www.ifeu.de/landwirtschaft/pdf/IFEU%20Naturraum-Bewertung%20LW%20Arbeitspapier%202000.pdf

  • Giegrich J, Sturm K (1996) Methodenpapier zur Naturraumbeanspruchung für Waldökosysteme; Materialband „Methodische Grundlagen“ in: Tiedemann A (2000) Ökobilanzen für graphische Papieren; Texte 22/00, Berlin

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change.  Kanagawa, Japan

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change. Kanagawa, Japan

  • Jalas J (1955) Hemerobe und hemerochore Pflanzenarten. Ein terminologischer Reformversuch. Acta Soc Flora Fauna Fennica 72:1–15

    Google Scholar 

  • Jedicke E (1990) Biotopverbund; Grundlagen und Maßnahmen einer neuen Naturschutzstrategie. Ulmer, Stuttgart

    Google Scholar 

  • JRC (2011) European Commission-Joint Research Centre – Institute for Environment and Sustainability. International Life Cycle Data System (ILCD) Handbook – Recommendations for Life Cycle Impact Assessment in the European context. First Edition November 2011. EUR 24571 EN. Luxemburg. Publications Office of the European Union

  • Kauertz B, Detzel A, Volz S (2011) Ökobilanz von Danone Activia-Verpackungen aus Polystyrol und Polylactid; On behalf of Danone GmbH, Heidelberg

  • Klöpffer W, Renner I (1995) Methodik der Wirkungsbilanz von Produkt-Ökobilanzen unter Berücksichtigung nicht oder nur schwer quantifizierbarer Umwelt-Kategorien. UBA-Texte 23/95; Berlin, 1995

  • Koellner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8:293–311

    Article  Google Scholar 

  • Koellner T, Geyer R (eds) (2013) Global land use impacts on biodiversity and ecosystem services. Int J Life Cycle Assess 18(6):1185–1277

  • Koellner T, Geyer R (2013b) Global land use impacts on biodiversity and ecosystem services. Int J Life Cycle Assess 18(6):1185–1187

    Article  Google Scholar 

  • Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1. An analytical framework for pure land accupation and land use change. Int J Life Cycle Assess 12(1):16–23

    Article  Google Scholar 

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2. Generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Goedkoop M, Margni M, Milà i Canals L, Müller-Wenk R, Weidema B, Wittstock B (2013a) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 18(6):1203–1215

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck B, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, Maia de Souza D, Müller-Wenk R (2013b) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202

    Article  Google Scholar 

  • Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn- und Blütenpflanzen Deutschlands. In: BfN (Hrsg.): Ursachen des Artenrückgangs von Wildpflanzen und Möglichkeiten zur Erhaltung der Artenvielfalt. Landwirtschaftsverlag Münster – Schriftenreihe für Vegetationskunde 29:299–444

  • Kowarik I (1999) Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. In: Konold W, Böcker R, Hampicke U (eds) Handbuch Naturschutz und Landschaftspflege. ecomed, Landsberg, pp 1–18

    Google Scholar 

  • Mila i Canals L, Romanya J, Cowell SJ (2007) Method for assessing impacts on life support functions (LSF) related to the use of “fertile land” in Life Cycle Assessment (LCA). J Clean Prod 15:1426–1440

    Article  Google Scholar 

  • Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, D’Amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Penn-Bressel G (2013) Flächeninanspruchnahme durch Siedlung und Verkehr und nachhaltige Flächennutzung; Oral presentation, 5. Dresdner Flächennutzungssymposium; 5.6.2013, Dresden, Germany. http://www.ioer.de/fileadmin/internet/IOER_schriften/IOER_Schrift_Band_61_kl_neu.pdf

  • Rüdisser J, Tasser E, Tappeiner U (2012) Distance to nature—a new biodiversity relevant environmental indicator set at the landscape level. Ecol Indic 15(1):208–216

    Article  Google Scholar 

  • Sturm K (1993) Prozeßschutz - ein Konzept für naturschutzgerechte Waldwirtschaft. Z Ökol Natursch 2:181–192

    Google Scholar 

  • Sukopp H (1972) Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluß des Menschen. Berichte über Landwirtschaft 50:112–139

    Google Scholar 

  • Tiedemann A (2000) Ökobilanzen für graphische Papieren; Umweltbundesamt Texte 22/00

  • UBA (1999) Bewertung in Ökobilanzen; Methode des Umweltbundesamtes zur Normierung von Wirkungsindikatoren, Ordnung (Rangbildung) von Wirkungskategorien und zur Auswertung nach ISO 14042 und 14043. Version’99. UBA Texte 92/99

  • UNEP (2014) Assessing global land use: balancing consumption with sustainable supply. a report of the working group on land and soils of the international resource panel. Bringezu S, Schütz H, Pengue W, O’Brien M, Garcia F, Sims R, Howarth R, Kauppi L, Swilling M. and Herrick J

  • Waldhardt R, Fuhr-Boßdorf K, Otte A, Schmidt J, Simmering D (1999) Typisierung, Lokalisierung und Regionalisierung einer peripheren Kulturlandschaft. Zeitschrift für Kulturtechnik und Landentwicklung 40:246–252

    Google Scholar 

  • Walz U, Stein C (2014) Indicators of hemeroby for the monitoring of landscapes in Germany. J Nat Conserv 22:279–289

    Article  Google Scholar 

  • Wrbka T, Erb K-H, Schulz NB, Peterseil J, Hahn C, Haberl H (2004) Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21(3):289–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Fehrenbach.

Additional information

Responsible editor: Walter Klöpffer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehrenbach, H., Grahl, B., Giegrich, J. et al. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int J Life Cycle Assess 20, 1511–1527 (2015). https://doi.org/10.1007/s11367-015-0955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0955-y

Keywords

Navigation