Skip to main content

Is there a resource constraint related to lithium ion batteries in cars?



The concept of electro mobility is gaining importance and has become more dynamic in recent years, particularly in developed economies. Besides a significant reduction of mobility-related CO2 emissions, electro mobility is also expected to minimize the current dependence on oil, while maximizing energy conversion efficiency. However, the associated shift in resource requirements towards so-called strategic metals gives reason to suspect that trade-offs could threaten the desired merits of e-mobility with regard to sustainability. This study aims to give a more comprehensive understanding of the challenges—including the issue of uncertainties—which the broad implementation of e-mobility could place on resource availability and especially on a sustainable management of special metals for the high voltage traction batteries forming the heart of the electric powertrain.


Future metal flows for three possible cathode materials containing the special metals lithium and cobalt are estimated in this paper by means of a Material Flow Analysis. Using two scenarios (dominant and pluralistic) projecting the annual demand for electric vehicles until 2050 and the free software STAN in order to perform the calculation steps to build up the model for the analysis, the MFA considers the resource input requirements based on annual vehicle registrations and the consequent energy requirements.

Results and discussion

The results indicate continuously rising lithium requirements with a wide variation in absolute terms depending on the scenario, which can be considered symptomatic for the uncertainty regarding the development of e-mobility. In the case of cobalt, the projected demand trajectories differ even more drastically between the two scenarios. In comparison to lithium though, for both scenarios cobalt requirements in absolute terms are much less than lithium requirements. With a view to currently known reserves, the cumulative demand for battery technology projected in the dominant scenario will consume 74–248 % (for two different cases) of the lithium reserves and 50 % of the cobalt reserves by 2050.


Despite significant differences between the examined scenarios, it becomes clear that e-mobility will be an increased driver for cobalt and particularly lithium demand in the future. Exact increases in demand for both metals are difficult to predict, especially due to the necessity of numerous assumptions, such as recycling rates, as well as data availability and quality. The results of this study imply a shift from managing primary resources, resource uses, and waste separately, towards managing materials, i.e., resource flows and their implications over the entire life cycle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Here only referring to Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV).

  2. 2.

    As an explicit example. Note that lithium contents vary among different lithium sources.


  1. Abraham D, Knuth J, Dees D, Bloom I, Christophersen J (2007) Degradation of high-power lithium-ion cells—electrochemistry of harvested electrodes. J Pow Sources 170(2):465–475

    CAS  Article  Google Scholar 

  2. Albach S (2014) Sustainable Resource Management, Masterthesis at Carl von Ossietzky University, available online

  3. Allen F, Halloran P, Leith A, Clare Lindsay M (2009) Using material flow analysis for sustainable materials management. J Ind Ecol 13(5):662–665

  4. Andersson B, Råde I (2001) Metal resource constraints for electric-vehicle batteries. Transp Res Part D: Transp Environ 6:297–324

    Article  Google Scholar 

  5. Angerer G, Marscheider-Weidemann F, Lüllmann A, Erdmann L, Scharp M, Handke V et al. (2009a) Rohstoffe für Zukunftstechnologien. Fraunhofer Institut für System- und Innovationsforschung (ISI); Institut für Zukunftsstudien und Technologiebewertung (IZT). Stuttgart: Fraunhofer IRB Verlag

  6. Angerer G, Marscheider-Weidemann F, Wendl M, Wietschel M (2009b) Lithium für Zukunftstechnologien - Nachfrage und Angebot unter besonderer Berücksichtigung der Elektromobilität. Fraunhofer ISI, Fraunhofer Systemforschung Elektromobilität (FSEM) & Innovationsallianz-Lithium-Ionen-Batterie (LIB2015), Karlsruhe

  7. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O et al (2007) Climate change 2007: synthesis report. IPCC, Valencia

    Google Scholar 

  8. Brandl M, Gall H, Wenger M, Lorentz V, Giegerich M, Baronti F et al. (2012) Batteries and battery management systems for electric vehicles. 2012 Design, Automation and Test in Europe Conf and Exhibition, pp 971–976

  9. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz R (2011) Aging mechanism in Li ion cells and calendar life predictions. J Pow Sources 97–98:13–21

    Google Scholar 

  10. Brunner P, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  11. Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. Öko-Institut e.V.; UNEP; United Nations University

  12. Buchert M, Jenseit W, Dittrich S, Hacker F, Schüler-Hainsch E, Ruhland K et al. (2011) Ressourceneffizienz und ressourcenpolitische Aspekte des Systems Elektromobilität. Arbeitspaket 7 des Forschungsvorhabens OPTUM, Öko-Institut e.V.;Umicore; TU Clausthal; Daimler AG, Darmstadt

  13. Bundesregierung D (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. Germany, Berlin

    Google Scholar 

  14. Cencic O, Rechberger H (2008) Material flow analysis with software STAN. J Env Eng Manag 18(1):3–7

    Google Scholar 

  15. Dijkema G, Reuter M, Verhoef E (2000) A new paradigm in waste management. Waste Manag 20(8):633–638

  16. Evans K (2014) Lithium. In: Gunn G (ed) Critical metals handbook, 1st edn. Wiley, Keyworth, Nottingham, UK, pp 230–260

    Google Scholar 

  17. Fulton L, Eads G (2004) IEA/SMP model documentation and reference case projection. WBCSD, WBCSD

    Google Scholar 

  18. Gaines L, Cuenca R (2000) Costs of lithium-ion batteries for vehicles. Argonne National Laboratory, Center for Transportation Research, Argonne, IL, USA

  19. Gerssen-Gondelach S, Faaij A (2012) Performance of batteries for electric vehicles on short and longer term. J Pow Sources 212:111–129

    CAS  Article  Google Scholar 

  20. Gruber P, Medina P, Keoleian G, Kesler SE, Wallington T (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15:760–775

  21. Hagelüken C, Meskers C (2010) Complex life cycles of precious and special metals. In: Graedel T, van der Voet E (eds) Linkages of sustainability. The MIT Press, Cambridge, pp 163–197

  22. Hawkins TR, Singh B, Majeau-Bettez G, Hammer Stromman A (2012) Comparative environmental life cycle assessment of conventional and electric vehicles—supporting material. Retrieved March 19, 2014 from Wiley Online Library:

  23. Hayner C, Zhao X, Kung H (2012) Materials for rechargeable lithium-ion batteries. Ann Rev Chem Biomolecu Eng 3:445–471

    CAS  Article  Google Scholar 

  24. Huggins R (2009) Advanced batteries—material science aspects. Springer, New York

    Google Scholar 

  25. IRP (2012) Responsible resource management for a sustainable world: Findings from the International Resource Panel. United Nations Environment Programme

  26. Jaskula B (2014, February) Mineral commodity summary: lithium. (USGS, Ed.) Retrieved May 20, 2014 from USGS:

  27. Kaiser O, Eickenbusch H, Grimm V, Zweck (2008) Zukunft des Autos. Zukünftige Technologien Consulting der VDI Technologiezentrum GmbH, Düsseldorf, Germany

  28. Kesler S, Gruber P, Medina P, Keoleian G, Everson M, Wallington T (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geolog Rev 48:55–69

    Article  Google Scholar 

  29. Konietzko S, Gernuks M (2011) Ressourcenverfügbarkeit von sekundären Rohstoffen - Potenzialanalyse für Lithium und Kobalt. LiBRi; LithoRec

  30. Kushnir D, Sandén B (2012) The time dimension and lithium resource constraints for electric vehicles. Res Pol 37(1):93–103

    Article  Google Scholar 

  31. Majeau-Bettez G, Hawkins T, Hammer Stromman A (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electrical vehicles. Supporting information. Environ Sci Technol 45(10):4548–4553

    CAS  Article  Google Scholar 

  32. Menzie D, Soto-Viruet Y, Bermúdez-Lugo O, Mobbs PM, Perez AA, Taib M, Wacaster S, and Staff (2013) Review of selected global mineral industries in 2011 and an outlook to 2017: U.S. Geological Survey Open-File Report 2013–1091, 33 p.,, accessed June 19th, 2015

  33. Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation. A Comprehen Rev Hydrometallurgy 150(IF-2.12):192–208

    CAS  Article  Google Scholar 

  34. Mondal P, Kumar A, Agarval V, Sharma N, Vijay P, Bhangale U et al (2011) Critical review of trends in GHG emissions from global automotive sector. Brit J Env Climate Change 1(1):1–12

    Article  Google Scholar 

  35. Notter D, Gauch M, Widmer R, Wäger P, Stamp A, Zah R et al (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Supporting information. Environ Sci Technol 44(17):6550–6556

    CAS  Article  Google Scholar 

  36. NPE (2012) Fortschrittsbericht der Nationalen Plattform für Elektromobilität (Dritter Bericht). NPE & GGEMO. Berlin, Germany: BMVBS

  37. OICA (2014) New PC registrations or sales 2005–2013. Retrieved April 27, 2014 from International Organization of Motor Vehicle Manufacturers:

  38. Peters A, Doll C, Plötz P, Sauer A, Schade W, Thielmann A et al. (2013) Konzepte der Elektromobilität - Ihre Bedeutung für Wirtschaft, Gesellschaft und Umwelt. (B. f. (TAB), Ed.) Berlin: edition sigma

  39. Pollet B, Staffell I, Shang J (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electroch Acta 84:235–249

    CAS  Article  Google Scholar 

  40. Roberts S, Gunn G (2014) Cobalt. In Gunn, G (ed) Critical metals handbook, 1st edn. John Wiley & Sons, Keyworth, Nottingham, UK, pp 122–147

  41. Scrosati B (2000) Recent advances in lithium ion battery materials. Electroch Acta 45:2461–2466

    CAS  Article  Google Scholar 

  42. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Pow Sources 195:2419–2430

    CAS  Article  Google Scholar 

  43. Shedd K (2014) Mineral commodity summary: cobalt. Retrieved May 21, 2014 from USGS:

  44. Stahel W (2006) The role of metals for designing products and solutions in the context of a sustainable society. In von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 593–607

  45. Thielmann A, Isenmann R, Wietschel M (2010) Technologie-Roadmap Lithium-Ionen-Batterien 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany: Fraunhofer Verlag

  46. Thielmann A, Sauer A, Isenmann R, Wietschel M (2012) Technologie-Roadmap Energiespeicher für die Elektromobilität. Fraunhofer-Institut für System- und Innovationsforschung, Karlsruhe, Germany

  47. Tie S, Tan C (2013) A review of energy sources and energy management system in electric vehicles. Renew Sust Energy Rev 20:82–102

    Article  Google Scholar 

  48. U.S. Geological Survey (2015) Mineral commodity summaries 2015: U.S. Geological Survey, 10.3133/70140094, accessed June 19th, 2015

  49. Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266

    Article  Google Scholar 

  50. von Gleich A (2006) Outlines of Sustainable Metals Industry. In: von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 4–40

    Chapter  Google Scholar 

  51. Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43:481–496

    CAS  Article  Google Scholar 

  52. Winter M, Brodd R (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    CAS  Article  Google Scholar 

  53. Ziemann S, Mueller D, Grunwald A, Schebek L, Weil M (2014) Rohstoffverfügbarkeit für ein zukünftiges Mobilitäts- und Energiesystem - Was können Untersuchungen der Rohstoffkreisläufe beitragen? In: Teipel U, Reller A (eds) 3. Symp Rohstoffeffizienz und Rohstoffinnovationen. Stuttgart: Fraunhofer Verlag, pp 405–417

Download references


Part of the research was made possible through founding the research group “Cascade Use” at Oldenburg University, funded by the German Federal Ministry of Education and Research (No: 01LN1310A).

Compliance with Ethical Standards

Conflicts of interest

The author(s) declare that they have no competing interests

Author information



Corresponding author

Correspondence to Alexandra Pehlken.

Additional information

Responsible editor: Ming Chen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pehlken, A., Albach, S. & Vogt, T. Is there a resource constraint related to lithium ion batteries in cars?. Int J Life Cycle Assess 22, 40–53 (2017).

Download citation


  • Electro mobility
  • Electric vehicle
  • Li-Ion battery
  • Material flow assessment
  • Sustainable resource management
  • Sustainability
  • Uncertainty