Skip to main content
Log in

Modelling spatially explicit impacts from phosphorus emissions in agriculture

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 25 June 2015

Abstract

Purpose

Excess phosphorus from fertilizer application and mobilised soil phosphorus from erosion are partially lost to the aquatic environment where they might cause eutrophication. Phosphorus emissions vary spatially and it is the goal of this study to broaden the scope of the existing inventory to the global scale and to increase the spatial resolution by accounting for relevant environmental processes.

Methods

Phosphorus emissions were estimated globally at a resolution of 5 arc-minutes for 169 crops. Two models were coupled for that purpose. First, the Universal Soil Loss Equation (USLE) model was used to determine soil erosion which is the dominant process inducing phosphorus emissions. Second, the Swiss Agricultural Life Cycle Analysis (SALCA) model was applied to estimate the phosphorus emissions from four different processes with erosion being one of them. The emissions as inventory were compared to the ecoinvent database and subsequently translated into environmental impacts on biodiversity via characterisation factors. Additionally, sensitivity and contribution to variance analyses were carried out.

Results and discussion

Our results suggest that the data in the ecoinvent database, which is widely used for life cycle assessments, underestimate phosphorus emissions by up to an order of magnitude. Furthermore, the contribution to variance analysis highlighted the importance of regionalising both, inventory results and characterisation factors.

Conclusions

Since the ecoinvent database provides a poor representation of global conditions, we highly recommend using regionalised estimates of phosphorus emissions provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JH, Schlüter L, Ærtebjerg G (2006) Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J Plankton Res 28(7):621–628

    Article  CAS  Google Scholar 

  • Ansari AA, Gill SS, Khan FA (2011) Eutrophication: threat to aquatic ecosystems. In: Ansari AA, Singh Gill S, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control. Springer, Netherlands, pp 143–170

    Chapter  Google Scholar 

  • Azevedo LB, Henderson AD, van Zelm R, Jolliet O, Huijbregts MAJ (2013a) Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in Europe. Environ Sci Technol 47(23):13565–13570

    Article  CAS  Google Scholar 

  • Azevedo LB, van Zelm R, Elshout PMF, Hendriks AJ, Leuven RSEW, Struijs J, de Zwart D, Huijbregts MAJ (2013b) Species richness–phosphorus relationships for lakes and streams worldwide. Glob Ecol Biogeogr 22(12):1304–1314

    Article  Google Scholar 

  • Azevedo LB, Verones F, Henderson AD, van Zelm R, Jolliet O, Huijbregts MAJ (2014) Freshwater eutrophication. In: Huijbregts MAJ, Verones F, Azevedo LB, Chaudhary A, Cosme N, Goedkoop M, Hauschild M, Laurent A, Mutel CL, Pfister S, Ponsioen T, Steinmann Z, van Zelm R, Vieira M, Hellweg S (eds) LC-Impact Version 0.1

  • Batjes NH (1996) Global assessment of land vulnerability to water erosion on a ½° by ½° grid. Land Degrad Dev 7(4):353–365

    Article  Google Scholar 

  • Björklund G, Burke J, Foster S, Rast W, Vallée D, van der Hoek W (2009) Impacts of water use on water systems and the environment. In: World water assessment programme (ed) The United Nations World Water Development Report 3. Water in a changing world. UNESCO, Paris

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Impact assessment of abiotic resource consumption conceptual considerations. Int J Life Cycle Assess 7(5):301–307

    Article  Google Scholar 

  • Brown LR (2009) Growing demand for soybeans threatens amazon rainforest. Earth Policy Institute. http://www.earth-policy.org/plan_b_updates/2009/update86. Accessed 26 Jan 2015

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chapagain AK, Hoekstra AY (2004) Water footprints of nations. UNESCO-IHE, Delft

    Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049

    Article  Google Scholar 

  • Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19(2):292–305

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27(2):261–266

    Article  CAS  Google Scholar 

  • Danielson JJ, Gesch DB (2008) An enhanced global elevation model generalized from multiple higher resolution source datasets. Int Arch Photogramm Remote Sens Spat Inf Sci 37:1857–1864

  • ecoinvent Centre (2014) Ecoinvent database version 3.1. Life cycle inventory (LCI) data. ecoinvent Association. http://www.ecoinvent.ch/. Accessed 25 Oct 2014

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6(8):439–447

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  Google Scholar 

  • Emmenegger MF, Reinhard J, Zah R, Ziep T, Weichbrodt R, Wohlgemuth V, Berlin F, Roches A, Knuchel RF, Gaillard G (2009) sustainability quick check for biofuels, intermediate background report. Agroscope Reckenholz-Tänikon, Dübendorf

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O‘Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts MAJ, Schryver A de, Struijs J, van Zelm R (2013) ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, www.lcia-recipe.net

  • GRASS Development Team (2014) Geographic Resources Analysis Support System (GRASS 6) Programmer’s manual. Open Source Geospatial Foundation Project. Watershed basin analysis program. GRASS Development Team. http://grass.osgeo.org/grass64/manuals/r.watershed.html. Accessed 10 Oct 2014

  • Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113

    Article  CAS  Google Scholar 

  • Helmes RK, Huijbregts MAJ, Henderson A, Jolliet O (2012) Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int J Life Cycle Assess 17(5):646–654

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Holman IP, Whelan MJ, Howden NJK, Bellamy PH, Willby NJ, Rivas-Casado M, McConvey P (2008) Phosphorus in groundwater—an overlooked contributor to eutrophication? Hydrol Process 22(26):5121–5127

    Article  Google Scholar 

  • Hsu A, Emerson J, Levy M, Sherbinin A de, Johnson L, Malik O, Schwartz J, Jaiteh M (2014) The 2014 Environmental Performance Index. Yale Center for Environmental Law & Policy. www.epi.yale.edu/epi. Accessed 03 Sep 2014

  • Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal 52(12):5186–5201

    Article  Google Scholar 

  • JRC (2011) Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors. International Reference Life Cycle Data. System - ILCD handbook. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2), pp81–93

  • Khan MN, Mohammad F (2014) Eutrophication: challenges and solutions. In: Ansari AA, Gill SS (eds) Eutrophication: Causes, Consequences and Control. Springer, Netherlands, pp 1–15

    Chapter  Google Scholar 

  • LC-Impact (2014) Characterisation factors. Freshwater eutrophication. http://www.lc-impact.eu/downloads-characterisation-factors. LC-Impact. Accessed 11 Aug 2014

  • Metson GS, Bennett EM, Elser JJ (2012) The role of diet in phosphorus demand. Environ Res Lett 7(4):44043

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles 22(1), GB1022

    Article  Google Scholar 

  • Mutel CL, de Baan L, Hellweg S (2013) Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study. Environ Sci Technol 47(11):5660–5667

    Article  CAS  Google Scholar 

  • Nachtergaele F, van Velthuizen H, Verelst L, Wiberg D (2012) Harmonized world soil database. Version 1.2. FAO, Rome

    Google Scholar 

  • Nemecek T, Schnetzer J (2011) Methods of assessment of direct field emissions for LCIs of agricultural production systems. Data v3.0. Agroscope Reckenholz-Tänikon, Zurich

    Google Scholar 

  • Nemecek T, Bengoa X, Lansche J, Mouron P, Rossi V, Humbert S (2014) Methodological guidelines for the life cycle inventory of agricultural products. Version 2.0. World food LCA database (WFLDB). Quantis and Agroscope, Lausanne and Zurich

  • Oberholzer H, Weisskopf P, Gaillard G, Weiss F, Freiermuth Knuchel R (2006) Methode zur Beurteilung der Wirkungen landwirtschaftlicher Bewirtschaftung auf die Bodenqualität in Ökobilanzen SALCA-SQ. Agroscope Reckenholz-Tänikon, Zurich

    Google Scholar 

  • Olivera F, Valenzuela M, Srinivasan R, Choi J, Cho H, Koka S, Agrawal A (2006) ArcGIS-SWAT: a geodata model and GIS interface for SWAT. J Am Water Res Assoc 42(2):295–309

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479–480:189–200

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45(13):5761–5768

    Article  CAS  Google Scholar 

  • Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14(2):1–22

    Article  Google Scholar 

  • Prasuhn V (2006) Erfassung der PO4-Austräge für die Ökobilanzierung SALCA Phosphor. Agroscope Reckenholz-Tänikon, Zurich

    Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  Google Scholar 

  • Robinson TP, Wint GRW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, Cinardi G, D‘Aietti L, Hay SI, Gilbert M (2014) Mapping the global distribution of livestock. PLoS ONE 9(5):e96084

    Article  Google Scholar 

  • Roy RN, Misra RV, Lesschen JP, Smaling EM (2003) Assessment of soil nutrient balance: approaches and methodologies. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184(4139):897–899

    Article  CAS  Google Scholar 

  • Seppälä J, Knuuttila S, Silvo K (2004) Eutrophication of aquatic ecosystems a new method for calculating the potential contributions of nitrogen and phosphorus. Int J Life Cycle Assess 9(2):90–100

    Article  Google Scholar 

  • Shieh GS (1998) A weighted Kendall’s tau statistic. Stat Probab Lett 39(1):17–24. doi:10.1016/S0167-7152(98)00006-6

    Article  Google Scholar 

  • Siegerist S, Pfister S (2013) Calculating crop-dependent spatially differentiated phosphorus emissions from agriculture. In: Proceedings from the LCA XIII International Conference

  • Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite—the role of an ectomycorrhizal fungus. Geobiology 10(5):445–456

    Article  CAS  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: Guiding human development on a changing planet. Science. doi:10.1126/science.1259855

    Google Scholar 

  • Stone RP, Hilborn D (2012) Fact sheet: Universal Soil Loss Equation (USLE). Ministry of Agriculture, Food and Rural Affairs, Ontario

    Google Scholar 

  • UNDP (2014) Human Development Report 2014. Sustaining human progress. Reducing vulnerabilities and building resilience. United Nations Development Programme, New York

    Google Scholar 

  • Vaccari DA, Strigul N (2011) Extrapolating phosphorus production to estimate resource reserves. Chemosphere 84(6):792–797

  • van Velthuizen H, Huddleston B, Fischer G, Salvatore M, Ataman E, Nachtergaele FO, Zanetti M, Bloise M, Antonicelli A, Bel J (2007) Mapping biophysical factors that influence agricultural production and rural vulnerability. Food and Agriculture Organization of the United Nations and International Institute for Applied Systems Analysis, Rome

    Google Scholar 

  • Williams JR, Singh VP (1995) The EPIC model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, pp 909–1000

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. United States Department of Agriculture, Washington, DC

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400(1–3):379–395

    Article  CAS  Google Scholar 

  • Yang X, Post WM, Thornton PE, Jain A (2013) The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10(4):2525–2537

    Article  CAS  Google Scholar 

  • Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126(1–2):67–80

Download references

Acknowledgments

We thank Catherine Raptis for proof reading the manuscript.

Ethical statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Scherer.

Additional information

Responsible editor: Seungdo Kim

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1021 kb)

ESM 2

(XLS 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, L., Pfister, S. Modelling spatially explicit impacts from phosphorus emissions in agriculture. Int J Life Cycle Assess 20, 785–795 (2015). https://doi.org/10.1007/s11367-015-0880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0880-0

Keywords

Navigation