Skip to main content

Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain

Abstract

Purpose

The goal of this study is to analyze the environmental improvement brought about by an alternative system for waste management proposed by the Integral-b project, funded by the European Union (EU). Its aim is to treat both used cooking oil (UCO) and organic waste from the restaurant and catering sector in Spain, by biodiesel production and anaerobic digestion, respectively. A cogeneration engine adapted to use glycerin as a fuel is implemented.

Methods

The functional unit (FU) is the management of the UCO and organic waste from restaurants and catering produced per person and year in Spain. The system proposed (scenario A) is compared to a system consisting of the prevailing management options for the same kind of waste (scenario B). Apart from including biodiesel production from the UCO, this reference scenario assumes that the organic waste is allocated to different streams, according to Spanish statistics. The systems under study generate different coproducts and as such are complex; therefore, system expansion is performed. Different scenario formulations are set to analyze the influence of assumptions regarding coproduct credits in the results. Finally, Monte Carlo simulations are carried out to analyze parameter uncertainty.

Results and discussion

The environmental benefits caused by scenario A are conditional on the choices regarding coproduct credits. Scenario A causes a reduction of the impact (43–655 %) in most of the scenario formulations when the current levels of UCO collection are considered. However, when higher levels of UCO collection are taken into account for the definition of the FU, scenario B performs better for half of the scenario formulations, due to the increase in the environmental credits from glycerin production. The only impact categories for which scenario A performs unconditionally better than scenario B are global warming and photochemical ozone creation. Parameter uncertainty appears to influence the comparative results to a lesser extent, mainly caused by the parameters involved in avoided processes.

Conclusions

Although system expansion appears as an option for dealing with the multifunctionality of waste management processes, uncertainty caused by choices must be assessed. Under our scenario assumptions, re-using the glycerol in the system proposed by Integral-b can be detrimental, and the reference scenario results in higher avoided burdens in some scenario formulations. Including glycerin valorization in scenario B should be considered if the biodiesel production keeps increasing in Spain. Analyzing parameter uncertainty helps to provide reliable results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Process 87(3):179–186

    CAS  Article  Google Scholar 

  • Arena U, Mastellone ML, Perugini F (2003) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96:207–222

    CAS  Article  Google Scholar 

  • Bachmaier J, Gronauer A (2007) Klimabilanz von biogasstrom. Klimabilanz der energetischen nutzung von biogas aus wirtschaftsdüngern und nachwachsenden rohstoffen. Bayerische Landesanstalt für Landwirtschaft (LfL), Freising (Germany)

  • Bao-guo T, Ji-tao S, Yan Z, Hong-tao W, Ji-ming H (2007) Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream. J Environ Sci 19:633–640

    Article  Google Scholar 

  • Beccali G, Cellura M, Mistretta M (2001) Managing municipal solid waste. Energetic and environmental comparison among different management options. Int J Life Cycle Assess 6(4):243–249

    CAS  Article  Google Scholar 

  • Björklund AE (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7(2):64–72

    Article  Google Scholar 

  • Bovea MD, Ibáñez-Forés V, Gallardo A, Colomer-Mendoza FJ (2010) Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Manag 30(11):2383–2395

    CAS  Article  Google Scholar 

  • BSI (2011) PAS 2050. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London

    Google Scholar 

  • Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123

    CAS  Article  Google Scholar 

  • Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments. A combined model of simulation and approximation. Int J Life Cycle Assess 9(4):216–226

    Article  Google Scholar 

  • Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Manag 32:2482–2495

    Article  Google Scholar 

  • Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35(8):1256–1266

    Article  Google Scholar 

  • Clift R, Doig A, Finnveden G (2000) The application of life cycle assessment to integrated solid waste management: part 1—methodology. Process Saf Environ Prot 78(4):279–287

    CAS  Article  Google Scholar 

  • Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data: a literature review. Int J Life Cycle Assess 12(Special Issue 1):65–78

    Google Scholar 

  • Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7(4):281–294

    Article  Google Scholar 

  • Ekvall T (2000) A market-based approach to allocation at open-loop recycling. Resour Conserv Recycl 29(1):91–109

    Article  Google Scholar 

  • Engström R, Carlsson-Kanyama A (2004) Food losses in food service institutions. Examples from Sweden. Food Policy 29:203–213

    Article  Google Scholar 

  • European Commission (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • European Commission (2011) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Thematic Strategy on the Prevention and Recycling of Waste. Brussels (Belgium)

  • Eurostat (2012) Landfill still accounted for nearly 40 % of municipal waste treated in the EU27 in 2010. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/. Accessed 28 Jan 2014

  • Eurostat (2013) In 2011, 40 % of treated municipal waste was recycled or composted, up from 27 % in 2001. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/. Accessed 28 Jan 2014

  • Finnveden G, Johansson J, Lind P, Moberg A (2000) Life Cycle Assessments of energy from solid waste. ISBN 91-7056-103-6. Stockholms Universitet, Systemekologi Och Foa, Stockholm (Sweden)

  • Finnveden G, Johansson J, Lind P, Moberg A (2005) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229

    Article  Google Scholar 

  • Giugliano M, Cernuschi S, Grosso M, Rigamonti L (2011) Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Manag 31(9):2092–2101

    Article  Google Scholar 

  • Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49:32–48

    Article  Google Scholar 

  • Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, de Haes HA U, de Briujn H, Van Duin R, Huigbregts MAJ (2002) Life cycle assessment: an operational guide to ISO standards. I: LCA in perspective. IIa: Guide. IIb: operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33

    Article  Google Scholar 

  • Heijungs R (1996) Identification of key issues for further investigation in improving the reliability of life-cycle assessments. J Clean Prod 4(3–4):159–166

    Article  Google Scholar 

  • Heijungs R, Guinée JB (2007) Allocation and “what-if” scenarios in life cycle assessment of waste management systems. Waste Manag 27(8):997–1005

    Article  Google Scholar 

  • Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl C, Schmidt S, Jakeman T (eds) iEMSs 2004 International Congress: complexity and integrated resources management. International Environmental Modeling and Software Society, Osnabrueck

    Google Scholar 

  • Heijungs R, Kleijn R (2001) Numerical approaches towards life cycle interpretation. Five examples. Int J Life Cycle Assess 6(3):141–148

    CAS  Article  Google Scholar 

  • Hischier R, Weidema BP, Althaus HJ, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemeck T (2010) Implementation of Life Cycle Impact Assessment Methods. Data v2.2. Ecoinvent report No 3. Swiss Centre for Life Cycle Inventories. Zurich/Laussane, Switzerland

    Google Scholar 

  • Huijbregts M (1998a) Application of uncertainty and variability in LCA. Part 1: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3(5):273–280

    Article  Google Scholar 

  • Huijbregts M (1998b) Application of uncertainty and variability in LCA. Part 2: dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. Int J Life Cycle Assess 3(6):343–351

    CAS  Article  Google Scholar 

  • Huijbregts M, Norris G, Bretz R, Ciroth A, Maurice B, Von Bahr B, Weidema B, De Beaufort A (2001) Framework for modeling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6(3):127–132

    Article  Google Scholar 

  • INE (2011) Instituto Nacional de Estadística. http://www.ine.es/. Accessed 13 Dec 2011

  • Iriarte A, Gabarrel X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914

    Article  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    CAS  Article  Google Scholar 

  • Jung J, Assen N, Bardow A (2014) Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. Int J Life Cycle Assess 19(3):661–676

    Article  Google Scholar 

  • Kaplan PO, Barlaz MA, Ranjithan SR (2004) A procedure for Life-Cycle-Based solid waste management with consideration of uncertainty. J Ind Ecol 8(4):155–172

    Article  Google Scholar 

  • Lechón Y, Cabal H, De la Rüa C, Caldés N, Santamaría M, Sáez R (2009) Energy and greenhouse gas emission saving of biofuels in Spain’s transport fuel. The adoption of the EU policy on biofuels. Biomass Bioenergy 33:920–932

    Article  Google Scholar 

  • Leoneti AB, Aragao-Leoneti V, De Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145

    CAS  Article  Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question. Biosci 51(5):341–352

    Article  Google Scholar 

  • MAGRAMA (2012) Ministerio de Agricultura, Alimentación y Medio Ambiente. Análisis cualitativo de las tendencias de la restauración en 2012 en base a la percepción de los operadores del sector. http://www.magrama.gob.es/es/alimentacion/publicaciones/. Accessed 31 Jan 2014

  • Malça J, Freire F (2010) Uncertainty analysis in biofuel systems. An application to the life cycle of rapeseed oil. J Ind Ecol 14(2):322–334

    Article  Google Scholar 

  • Malça J, Freire F (2011) Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew Sustain Energy Rev 15:338–351

    Article  Google Scholar 

  • Martínez-Blanco J, Muñoz P, Antón A, Rieradevall J (2009) Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour Conserv Recycl 53:340–351

    Article  Google Scholar 

  • Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home full scale. Waste Manag 30:983–994

    Article  Google Scholar 

  • McDougall FR, White PR, Franke M, Hindle P (2008) Integrated solid waste management: a life cycle inventory. Wiley, Hoboken

    Google Scholar 

  • Moberg Å, Finnveden G, Johansson J, Lind P (2005) Life cycle assessment of energy from solid waste—part 2: landfilling compared to other treatment methods. J Clean Prod 13(3):231–240

    Article  Google Scholar 

  • Morgan MG, Small M (1992) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Muñoz-Cidad C, Sosvilla S (2012) Informe económico 2011. Federación Española de Industrias de la Alimentación y Bebidas (FIAB). ISBN 978-84-695-3508-0. Universidad Complutense de Madrid, Madrid (Spain)

  • Niederl A, Narodoslawsky M (2006) Ecological evaluation of processes based on by-products or waste from agriculture: life cycle assessment of biodiesel from tallow and used vegetable oil. In: Bozell JJ y Patel MK (ed) Feedstocks for the future. ACS Symposium Series, vol. 921, chapter 18pp 239–25. doi: 10.1021/bk-2006-0921.ch018

  • Palisade Corporation (2009) Guide to using @RISK. Risk analysis and simulation add-in for Microsoft® Excel, version 5.5. Ithaca, NY

    Google Scholar 

  • PE International (2013) Gabi software and database: contents for life cycle. Engineering, Stuttgart

    Google Scholar 

  • Rodrigo A, Martínez L, Hag-Omer N, Miguel E (2011) Proyecto Integral-b: sistema de producción conjunta y sostenible de biodiesel y biogás a partir de residuos orgánicos del canal HORECA e industria alimentaria. Rev Tec de Medio Ambient Retema 149:26–31

    Google Scholar 

  • Sonnemann GW, Schuhmacher M, Castells F (2003) Uncertainty assessment by Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11:279–292

    Article  Google Scholar 

  • Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14(2):335–353

    Article  Google Scholar 

  • Talens L, Villalba G, Gabarrell X (2008) Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils. Environ Sci Technol 43:4977–4981

    Google Scholar 

  • Talens L, Lombardi L, Villalba G, Gabarrell X (2010) Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy 35:889–893

    Article  Google Scholar 

  • Vinyes E, Oliver-Solà J, Ugaya C, Rieradevall J, Gasol CM (2013) Application of LCSA to used cooking oil waste management. Int J Life Cycle Assess 18(2):445–455

    CAS  Article  Google Scholar 

  • Winkler J, Bilitewski B (2007) Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag 27(8):1021–1031

    Article  Google Scholar 

  • Wright Tech Systems (2007) Converting organic waste to energy. Biological dryers vs. anaerobic digestion. http://www.wrighttech.ca/Links.htm. Accessed 17 Feb 2014

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219

    CAS  Article  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Generalitat Valenciana for the finantial support (PrometeoII/2014/005), and for providing the funds for N. Escobar’s research contract (ACIF/2010/200). They would also like to thank all the Integral-b partners for cooperating closely and making this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Escobar Lanzuela.

Additional information

Responsible editor: Ralph K. Rosenbaum

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8057 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escobar Lanzuela, N., Ribal Sanchís, F.J., Rodrigo Señer, A. et al. Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain. Int J Life Cycle Assess 20, 244–262 (2015). https://doi.org/10.1007/s11367-014-0825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0825-z

Keywords

  • Food waste
  • Monte Carlo
  • Organic waste
  • System expansion
  • Uncertainty
  • Used cooking oil
  • Waste management