Skip to main content
Log in

Updated unit process data for coal-based energy in China including parameters for overall dispersions

  • DATA AVAILABILITY, DATA QUALITY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Chinese coal power generation is part of the life cycle of most products and the largest single source for many emissions. Reducing these emissions has been a priority for the Chinese government over the last decade, with improvements made by replacing older power plants, improving thermal efficiency and installing air pollution control devices. In the present research, we aim to acknowledge these improvements and present updated unit process data for Chinese coal power. In the course of doing so, we also explore the implementation and interpretation of overall dispersions related to a generically averaged process, such as Chinese coal power.

Methods

In order to capture geographical and temporal dispersions, updated unit process data were calculated for Chinese coal power at both a national and a provincial level. The updated unit process dataset was also propagated into life cycle inventory (LCI) ranges using Monte Carlo simulations, allowing for discrepancies to be evaluated against the most commonly used inventory database (ecoinvent) and overall dispersions to be shown for some selected provinces.

Results and discussion

Compared to ecoinvent, the updated dataset resulted in reductions with between 8 and 67 % for all evaluated inventory flows except for dinitrogen monoxide (N2O). However, interprovincial differences in emissions diverged with up to 250 %. A random outcome in a few Monte Carlo runs was inverted operators, where positive values became negative or the other way around. This is a known possible outcome of matrix calculations that needs to be better evaluated when interpreting propagated outcomes.

Conclusions

The present manuscript provides recommendations on how to implement and interpret dispersions propagated into LCI results. In addition, updated and easily accessible unit process data for coal power plants averaged across China and for individual provinces are presented, with clear distinctions of inherent uncertainties, spread (variance) and unrepresentativeness. Recommendations are also provided for future research and software developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • BP (2013) BP statistical review of world energy June 2013

  • Burnham A, Han J, Clark CE et al (2012) Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ Sci Technol 46:619–627. doi:10.1021/es201942m

  • Cai W, Wang C, Jin Z, Chen J (2013) Quantifying baseline emission factors of air pollutants in China’s regional power grids. Environ Sci Technol 47:3590–3597

    Article  CAS  Google Scholar 

  • CEC (2013a) China Electricity Council—information of coal power plant flue gas desulfurization denitration industry in 2012 (in Chinese). http://www.cec.org.cn/huanbao/jienenghbfenhui/huanbaochanyejijishufuwu/chanyedongtai/chanyexinxi/2013-03-20/99027.html. Accessed 15 Sep 2013

  • CEC (2013b) China Electricity Council—basic data of power industry statistics in 2011, webpage http://www.cec.org.cn/d/file/guihuayutongji/tongjxinxi/niandushuju/2013-04-19/34df3e56ce28a3cc02da66706e1b23b2.xls. Accessed 15 Sep 2013 (in Chinese)

  • CEC (2013c) China Electricity Council - January - August 2013 power industry statistics. http://www.cec.org.cn/d/file/guihuayutongji/tongjxinxi/yuedushuju/2013-09-16/53ba811beba059a521e43879a1b4de09.xls. Accessed 15 Sep 2013 (in Chinese)

  • CEC (2013d) China Electricity Council—the electrostatic precipitator technology will become mainstream to reduce the PM2.5 from thermal power. http://www.cec.org.cn/xinwenpingxi/2013-08-01/106702.html. Accessed 15 Sep 2013 (in Chinese)

  • Cheng Y-P, Wang L, Zhang X-L (2011) Environmental impact of coal mine methane emissions and responding strategies in China. Int J Greenh Gas Control 5:157–166

    Article  CAS  Google Scholar 

  • Cui X, Hong J, Gao M (2012) Environmental impact assessment of three coal-based electricity generation scenarios in China. Energy 45:952–959

    Article  Google Scholar 

  • Di X, Nie Z, Yuan B, Zuo T (2007) Life cycle inventory for electricity generation in China. Int J Life Cycle Assess 12:217–224

    Article  CAS  Google Scholar 

  • Dones R, Zhou X, Tian C (2004) Life cycle assessment (LCA) of Chinese energy chains for Shandong electricity scenarios. Int J Glob Energy Issues 22:199–224

    Google Scholar 

  • Dones R, Bauer C, Rööder A (2007) Kohle. In: Dones R et al. (ed) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Eindbezug von Energiesystemen in Ökobilanzen für die Schweiz. Final report ecoinvent No. 6-VI. 0:346

  • Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Overview and methodology. ecoinvent report no. 1. Dübendorf, Switzerland

  • Gómez DR, Watterson JD, Americano BB, Ha C, Marland G, Matsika E, Namayanga LN, Osman-Elasha B, Kalenga Saka JD, Treanton K (2006) IPCC 2006 guidelines for national greenhouse gas inventories, chapter 2: stationary combustion. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Guan D, Liu Z, Geng Y et al (2012) The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Chang 2:672–675

    CAS  Google Scholar 

  • Heijungs R, Frischknecht R (2005) Representing statistical distributions for uncertain parameters in LCA. Int J Life Cycle Assess 10:248–254

    Article  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Henriksson PJG, Guinée JB, Heijungs R, de Koning A, Green DM (2014a) A protocol for horizontal averaging of unit process data—including estimates for uncertainty. Int J Life Cycle Assess 19(2):429–436

    Article  Google Scholar 

  • Henriksson PJG, Zhang W, Nahid SAA, Newton R, Phan LT, Dao HM, Zhang Z, Jaithiang J, Andong R, Chaimanuskul K, Vo NS, Hua HV, Haque MM, Das R, Kruijssen F, Satapornvanit K, Nguyen PT, Liu Q, Liu L, Wahab MA, Murray FJ, Little DC, Guinée JB (2014b) Final LCA case study report—results of LCA studies of Asian aquaculture systems for tilapia, catfish, shrimp, and freshwater prawn. SEAT Deliverable D3.5

  • ISO 14044 (2006) Environmental management—life cycle assessment—requirements and guidelines (ISO 14044:2006). Geneva, Switzerland

  • Klöpffer W, Curran MA (2013) How many case studies should we publish, if any? Int J Life Cycle Assess 19:1–2. doi:10.1007/s11367-013-0667-0

    Article  Google Scholar 

  • Kuenzer C, Zhang J, Tetzlaff A, van Dijk P, Voigt S, Mehl H, Wagner W (2007) Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in north-central China. Appl Geogr 27:42–62. doi:10.1016/j.apgeog.2006.09.007

    Article  Google Scholar 

  • Liang X, Wang Z, Zhou Z, Huang Z, Zhou J, Cen K (2013) Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J Clean Prod 39:24–31. doi:10.1016/j.jclepro.2012.08.003

    Article  CAS  Google Scholar 

  • Lin J, Pan D, Davis SJ et al (2014) China’s international trade and air pollution in the United States. Proc Natl Acad Sci U S A 111:1736–1741. doi:10.1073/pnas.1312860111

    Article  CAS  Google Scholar 

  • Liu W, Lund H, Mathiesen BV (2013) Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development. Energy Policy 58:347–357. doi:10.1016/j.enpol.2013.03.032

    Article  Google Scholar 

  • Maurice B, Frischknecht R, Coelho-Schwirtz V, Hungerbühler K (2000) Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. J Clean Prod 8:95–108. doi:10.1016/S0959-6526(99)00324-8

    Article  Google Scholar 

  • NBS (2011) National Bureau of Statistics—China Electric Power Yearbook. China Statistical Press, Beijing (in Chinese)

    Google Scholar 

  • Noceti P, Smith J, Hodges S (2003) An evaluation of tests of distributional forecasts. J Forecast 22:447–455. doi:10.1002/for.876

    Article  Google Scholar 

  • Ou X, Xiaoyu Y, Zhang X (2011) Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Appl Energy 88:289–297. doi:10.1016/j.apenergy.2010.05.010

    Article  CAS  Google Scholar 

  • Ou X, Yan X, Zhang X, Liu Z (2012) Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China. Appl Energy 90:218–224. doi:10.1016/j.apenergy.2011.03.032

    Article  Google Scholar 

  • Patzek TW, Croft GD (2010) A global coal production forecast with multi-Hubbert cycle analysis. Energy 35:3109–3122. doi:10.1016/j.energy.2010.02.009

    Article  CAS  Google Scholar 

  • Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic: why environmental scientists can’t predict the future. 248

  • Rosema A, Genderen JL, van Schalke HJWG (1993) Environmental monitoring of coal fires in north China. Project Identification Mission Report. BCRS 93–29. ISBN 90 5411 1054

  • Serlin RC (2000) Testing for robustness in Monte Carlo studies. Psychol Methods 5:230–240. doi:10.1037/1082-989X.5.2.230

    Article  CAS  Google Scholar 

  • Steinmann ZJN, Hauck M, Karuppiah R, Laurenzi IJ, Huijbregts MAJ (2014) A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA. Int J Life Cycle Assess. doi:10.1007/s11367-014-0717-2

    Google Scholar 

  • Su B, Ang BW (2013) Input–output analysis of CO2 emissions embodied in trade: competitive versus non-competitive imports. Energy Policy 56:83–87. doi:10.1016/j.enpol.2013.01.041

    Article  Google Scholar 

  • Su S, Li B, Cui S, Tao S (2011) Sulfur dioxide emissions from combustion in China: from 1990 to 2007. Environ Sci Technol 45:8403–8410. doi:10.1021/es201656f

    Article  CAS  Google Scholar 

  • Tian H, Cheng K, Wang Y, Zhao D, Lu L, Jia W, Hao J (2012) Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmos Environ 50:157–163. doi:10.1016/j.atmosenv.2011.12.045

    Article  CAS  Google Scholar 

  • Treyer K, Bauer C (2013) Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part I: electricity generation. Int J Life Cycle Assess. doi:10.1007/s11367-013-0665-2

    Google Scholar 

  • Van Dijk P, Zhang J, Jun W, Kuenzer C, Wolf K-H (2011) Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates. Int J Coal Geol 86:108–119

    Article  Google Scholar 

  • Venkatesh A (2012) Towards robust energy systems modeling: examining uncertainty in fossil fuel-based life cycle assessment approaches. Dissertation, Carnegie Mellon University

  • Wang C, Ducruet C (2014) Transport corridors and regional balance in China: the case of coal trade and logistics. J Transp Geogr 40:3–16. doi:10.1016/j.jtrangeo.2014.08.009

    Article  Google Scholar 

  • Weidema BP, Bauer C, Hischier R, et al. (2012) Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1. 3:166

  • Xu G, Yang Y, Lu S et al (2011) Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process. Energy Policy 39:2343–2351. doi:10.1016/j.enpol.2011.01.054

    Article  CAS  Google Scholar 

  • Xu Y, Yang C-J, Xuan X (2013) Engineering and optimization approaches to enhance the thermal efficiency of coal electricity generation in China. Energy Policy 60:356–363. doi:10.1016/j.enpol.2013.05.047

    Article  Google Scholar 

  • Yang C-J, Jackson RB (2013) China’s synthetic natural gas revolution. Nat Clim Chang 3:852–854. doi:10.1038/nclimate1988

    Article  CAS  Google Scholar 

  • Yearbook CCI (2010) China Coal Industry Yearbook 2008. Coal Industry Publishing house, Beijing (in Chinese)

    Google Scholar 

  • Zhang B, Chen GQ (2010) Methane emissions by Chinese economy: inventory and embodiment analysis. Energy Policy 38:4304–4316. doi:10.1016/j.enpol.2010.03.059

    Article  CAS  Google Scholar 

  • Zhang J, Mauzerall DL, Zhu T et al (2010) Environmental health in China: progress towards clean air and safe water. Lancet 375:1110–1119. doi:10.1016/S0140-6736(10)60062-1

    Article  Google Scholar 

  • Zhao Y, Wang S, Duan L, Lei Y, Cao P, Hao J (2008) Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction. Atmos Environ 42:8442–8452. doi:10.1016/j.atmosenv.2008.08.021

    Article  CAS  Google Scholar 

  • Zhao Y, Wang S, Nielsen CP, Li X, Hao J (2010) Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmos Environ 44:1515–1523. doi:10.1016/j.atmosenv.2010.01.017

    Article  CAS  Google Scholar 

  • Zhao Y, Nielsen CP, Lei Y, McElroy MB, Hao J (2011) Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China. Atmos Chem Phys 11:2295–2308. doi:10.5194/acp-11-2295-2011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the Sustaining Ethical Aquaculture Trade (SEAT) project, which is co-funded by the European Commission within the Seventh Framework Programme—Sustainable Development Global Change and Ecosystem (project no. 222889) http://www.seatglobal.eu. We also would like to extend our gratitude to René Kleijn who inspired us to write this article and to Reinout Heijungs for invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik John Gustav Henriksson.

Additional information

Responsible editor: Zuoren Nie

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriksson, P.J.G., Zhang, W. & Guinée, J.B. Updated unit process data for coal-based energy in China including parameters for overall dispersions. Int J Life Cycle Assess 20, 185–195 (2015). https://doi.org/10.1007/s11367-014-0816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0816-0

Keywords

Navigation