A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups

  • Pieter M. F. Elshout
  • Rosalie van Zelm
  • Ramkumar Karuppiah
  • Ian J. Laurenzi
  • Mark A. J. Huijbregts



Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.


We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.


The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.


Biodiversity Characterization factor Crop cultivation Life cycle impact assessment Land occupation Species richness 



This study was part of a collaboration between ExxonMobil Research and Engineering (NJ, USA) and the Department of Environmental Science of the Radboud University Nijmegen (The Netherlands). The authors wish to thank Laura de Baan for providing data and sharing her expertise and two anonymous reviewers for their helpful comments.

Supplementary material

11367_2014_701_MOESM1_ESM.docx (117 kb)
ESM (DOCX 117 kb)


  1. Alkemade R, Van Oorschot M, Miles L, Nellemann C, Bakkenes M, Ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystem 12(3):374–390CrossRefGoogle Scholar
  2. Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586CrossRefGoogle Scholar
  3. Bare J (2011) Recommendation for land use impact assessment: first steps into framework, theory, and implementation. Clean Techn Environ Policy 13(1):7–18CrossRefGoogle Scholar
  4. Basedow T (1998) The species composition and frequency of spiders (Araneae) in fields of winter wheat grown under different conditions in Germany. J Appl Entomol 122:585–590CrossRefGoogle Scholar
  5. Bellamy PE, Croxton PJ, Heard MS, Hinsley SA, Hulmes L, Hulmes S, Nuttall P, Pywell RF, Rothery P (2009) The impact of growing miscanthus for biomass on farmland bird populations. Biomass Bioenergy 33(2):191–199CrossRefGoogle Scholar
  6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188CrossRefGoogle Scholar
  7. Booij CJH, Noorlander J (1992) Farming systems and insect predators. Agric Ecosyst Environ 40:125–135CrossRefGoogle Scholar
  8. Boutin C, Martin PA, Baril A (2009) Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience 16(4):492–501CrossRefGoogle Scholar
  9. Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7(6):339–348Google Scholar
  10. Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31(2):107–113CrossRefGoogle Scholar
  11. Cook WM, Faeth SH (2006) Irrigation and land use drive ground arthropod community patterns in an urban desert. Environ Entomol 35(6):1532–1540CrossRefGoogle Scholar
  12. Curran M, De Baan L, De Schryver AM, Van Zelm R, Hellweg S, Köllner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79CrossRefGoogle Scholar
  13. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2008) Biofuel plantation on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348–358CrossRefGoogle Scholar
  14. De Baan L, Mutel CL, Curran M, Hellweg S, Köllner T (2013a) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47(16):9281–9290CrossRefGoogle Scholar
  15. De Baan L, Alkemade R, Köllner T (2013b) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230CrossRefGoogle Scholar
  16. De Schryver AM, Goedkoop MJ, Leuven RSEW, Huijbregts MAJ (2010) Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int J Life Cycle Assess 15(7):682–691CrossRefGoogle Scholar
  17. De Snoo GR (1997) Arable flora in sprayed and unsprayed crop edges. Agric Ecosyst Environ 66(3):223–230CrossRefGoogle Scholar
  18. De Souza DM, Flynn DFB, DeClerck F, Rosenbaum RK, De Melo Lisboa H, Köllner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242CrossRefGoogle Scholar
  19. Estrada A, Coates-Estrada R (2005) Diversity of Neotropical migratory landbird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodivers Conserv 14(7):1719–1734CrossRefGoogle Scholar
  20. Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21(5):1772–1781CrossRefGoogle Scholar
  21. Foley JA, DeFriest R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  22. Gaines HR, Gratton C (2010) Seed predation increases with ground beetle diversity in a Wisconsin (USA) potato agroecosystem. Agric Ecosyst Environ 137:329–336CrossRefGoogle Scholar
  23. Gardiner MA, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. BioEnergy 3(1):6–19CrossRefGoogle Scholar
  24. Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical biodiversity in a human-modified world. Ecol Lett 12(6):561–582CrossRefGoogle Scholar
  25. Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. Part 2: impact assessment. Int J Life Cycle Assess 15(7):692–703CrossRefGoogle Scholar
  26. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391CrossRefGoogle Scholar
  27. Hanafiah MM, Hendriks AJ, Huijbregts MAJ (2012) Comparing the ecological footprint with the biodiversity footprint of products. J Clean Prod 37:107–114CrossRefGoogle Scholar
  28. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122(1):113–130CrossRefGoogle Scholar
  29. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1–25CrossRefGoogle Scholar
  30. Kessler M, Abrahamczyk S, Bos M, Buchori D, Dwi Putra D, Gradstein SR, Hõhn P, Kluge J, Orend F, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl 19(8):2142–2156CrossRefGoogle Scholar
  31. Khoury F, Al-Shamlih M (2006) The impact of intensive agriculture on the bird community of a sand dune desert. J Arid Environ 64(3):448–459CrossRefGoogle Scholar
  32. Kløverpris J, Wenzel H, Nielsen PH (2007) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13–21Google Scholar
  33. Köllner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8(4):293–311CrossRefGoogle Scholar
  34. Köllner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12(1):16–23Google Scholar
  35. Köllner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32–48Google Scholar
  36. Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228CrossRefGoogle Scholar
  37. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621CrossRefGoogle Scholar
  38. Lang A, Filser J, Henschel JR (1999) Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric Ecosyst Environ 72(2):189–199CrossRefGoogle Scholar
  39. Larsen FW, Bladt J, Balmford A, Rahbek C (2012) Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness? J Appl Ecol 49(2):349–356CrossRefGoogle Scholar
  40. Lindeijer E (2000a) Review of land use impact methodologies. J Clean Prod 8(4):273–281CrossRefGoogle Scholar
  41. Lindeijer E (2000b) Biodiversity and life support impacts of land use in LCA. J Clean Prod 8(4):313–319CrossRefGoogle Scholar
  42. Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA, Finnveden G, Goedkoop M et al. (eds) Life cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64Google Scholar
  43. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60CrossRefGoogle Scholar
  44. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509CrossRefGoogle Scholar
  45. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73(2):181–201CrossRefGoogle Scholar
  46. McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201–212CrossRefGoogle Scholar
  47. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259–271CrossRefGoogle Scholar
  48. Michelsen O (2008) Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22–31Google Scholar
  49. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15CrossRefGoogle Scholar
  50. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  51. Müller C, De Baan L, Köllner T (2013) Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. Int J Life Cycle Assess. doi: 10.1007/s11367-013-0638-5 Google Scholar
  52. Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182CrossRefGoogle Scholar
  53. Mulugeta D, Stoltenberg DE, Boerboom CM (2001) Weed species–area relationships as influenced by tillage. Weed Sci 49(2):217–223CrossRefGoogle Scholar
  54. Nepstad DC, Veríssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  55. Olsen DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  56. Ottonetti L, Tucci L, Frizzi F, Chelazzi G, Santini G (2010) Changes in ground-foraging ant assemblages along a disturbance gradient in a tropical agricultural landscape. Ethol Ecol Evol 22(1):73–86CrossRefGoogle Scholar
  57. Ouchtati N, Doumandji S, Brandmayr P (2012) Comparison of ground beetle (Coleoptera: Carabidae) assemblages in cultivated and natural steppe biotopes of the semi-arid region of Algeria. Afr Entomol 20(1):134–143CrossRefGoogle Scholar
  58. Prendergast JR (2006) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20(2):210–216CrossRefGoogle Scholar
  59. Riechert SE, Bishop L (1990) Prey control by an assemblage of generalist predators: spiders in garden test systems. Ecology 71(4):1441–1450CrossRefGoogle Scholar
  60. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737CrossRefGoogle Scholar
  61. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942CrossRefGoogle Scholar
  62. Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42(2):281–287CrossRefGoogle Scholar
  63. Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabudding, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14(5):1321–1333CrossRefGoogle Scholar
  64. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654–660CrossRefGoogle Scholar
  65. Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr 5:1–34Google Scholar
  66. Ulber L, Steinmann H-H, Klimek S, Isselstein J (2009) An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res 49(5):534–543CrossRefGoogle Scholar
  67. Vandewalle M, de Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Martins da Silva P, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19(10):2921–2947CrossRefGoogle Scholar
  68. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  69. Vogtländer JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. J Clean Prod 12(1):47–57CrossRefGoogle Scholar
  70. Ward KE, Ward RN (2001) Diversity and abundance of carabid beetles in short-rotation plantings of sweetgum, maize and switchgrass in Alabama. Agrofor Syst 53(3):261–267CrossRefGoogle Scholar
  71. Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use. Technical University of Denmark, LyngbyGoogle Scholar
  72. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRefGoogle Scholar
  73. Wilson JD, Whittingham MJ, Bradbury RB (2005) The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis 147(3):453–463CrossRefGoogle Scholar
  74. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38(3):287–301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pieter M. F. Elshout
    • 1
  • Rosalie van Zelm
    • 1
  • Ramkumar Karuppiah
    • 2
  • Ian J. Laurenzi
    • 2
  • Mark A. J. Huijbregts
    • 1
  1. 1.Institute for Water and Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.ExxonMobil Research and Engineering CompanyAnnandaleUSA

Personalised recommendations