Skip to main content

Advertisement

Log in

A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.

Methods

We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.

Conclusions

The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alkemade R, Van Oorschot M, Miles L, Nellemann C, Bakkenes M, Ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystem 12(3):374–390

    Article  Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Bare J (2011) Recommendation for land use impact assessment: first steps into framework, theory, and implementation. Clean Techn Environ Policy 13(1):7–18

    Article  Google Scholar 

  • Basedow T (1998) The species composition and frequency of spiders (Araneae) in fields of winter wheat grown under different conditions in Germany. J Appl Entomol 122:585–590

    Article  Google Scholar 

  • Bellamy PE, Croxton PJ, Heard MS, Hinsley SA, Hulmes L, Hulmes S, Nuttall P, Pywell RF, Rothery P (2009) The impact of growing miscanthus for biomass on farmland bird populations. Biomass Bioenergy 33(2):191–199

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Article  Google Scholar 

  • Booij CJH, Noorlander J (1992) Farming systems and insect predators. Agric Ecosyst Environ 40:125–135

    Article  Google Scholar 

  • Boutin C, Martin PA, Baril A (2009) Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience 16(4):492–501

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7(6):339–348

    Google Scholar 

  • Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31(2):107–113

    Article  Google Scholar 

  • Cook WM, Faeth SH (2006) Irrigation and land use drive ground arthropod community patterns in an urban desert. Environ Entomol 35(6):1532–1540

    Article  Google Scholar 

  • Curran M, De Baan L, De Schryver AM, Van Zelm R, Hellweg S, Köllner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79

    Article  CAS  Google Scholar 

  • Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2008) Biofuel plantation on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23(2):348–358

    Article  Google Scholar 

  • De Baan L, Mutel CL, Curran M, Hellweg S, Köllner T (2013a) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47(16):9281–9290

    Article  Google Scholar 

  • De Baan L, Alkemade R, Köllner T (2013b) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  • De Schryver AM, Goedkoop MJ, Leuven RSEW, Huijbregts MAJ (2010) Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int J Life Cycle Assess 15(7):682–691

    Article  Google Scholar 

  • De Snoo GR (1997) Arable flora in sprayed and unsprayed crop edges. Agric Ecosyst Environ 66(3):223–230

    Article  Google Scholar 

  • De Souza DM, Flynn DFB, DeClerck F, Rosenbaum RK, De Melo Lisboa H, Köllner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R (2005) Diversity of Neotropical migratory landbird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodivers Conserv 14(7):1719–1734

    Article  Google Scholar 

  • Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21(5):1772–1781

    Article  Google Scholar 

  • Foley JA, DeFriest R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  Google Scholar 

  • Gaines HR, Gratton C (2010) Seed predation increases with ground beetle diversity in a Wisconsin (USA) potato agroecosystem. Agric Ecosyst Environ 137:329–336

    Article  Google Scholar 

  • Gardiner MA, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. BioEnergy 3(1):6–19

    Article  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical biodiversity in a human-modified world. Ecol Lett 12(6):561–582

    Article  Google Scholar 

  • Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. Part 2: impact assessment. Int J Life Cycle Assess 15(7):692–703

    Article  CAS  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Hanafiah MM, Hendriks AJ, Huijbregts MAJ (2012) Comparing the ecological footprint with the biodiversity footprint of products. J Clean Prod 37:107–114

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122(1):113–130

    Article  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1–25

    Article  Google Scholar 

  • Kessler M, Abrahamczyk S, Bos M, Buchori D, Dwi Putra D, Gradstein SR, Hõhn P, Kluge J, Orend F, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl 19(8):2142–2156

    Article  Google Scholar 

  • Khoury F, Al-Shamlih M (2006) The impact of intensive agriculture on the bird community of a sand dune desert. J Arid Environ 64(3):448–459

    Article  Google Scholar 

  • Kløverpris J, Wenzel H, Nielsen PH (2007) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13–21

    Google Scholar 

  • Köllner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8(4):293–311

    Article  Google Scholar 

  • Köllner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12(1):16–23

    Google Scholar 

  • Köllner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Lang A, Filser J, Henschel JR (1999) Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric Ecosyst Environ 72(2):189–199

    Article  Google Scholar 

  • Larsen FW, Bladt J, Balmford A, Rahbek C (2012) Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness? J Appl Ecol 49(2):349–356

    Article  Google Scholar 

  • Lindeijer E (2000a) Review of land use impact methodologies. J Clean Prod 8(4):273–281

    Article  Google Scholar 

  • Lindeijer E (2000b) Biodiversity and life support impacts of land use in LCA. J Clean Prod 8(4):313–319

    Article  Google Scholar 

  • Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA, Finnveden G, Goedkoop M et al. (eds) Life cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73(2):181–201

    Article  Google Scholar 

  • McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201–212

    Article  Google Scholar 

  • Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259–271

    Article  Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22–31

    Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Müller C, De Baan L, Köllner T (2013) Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. Int J Life Cycle Assess. doi:10.1007/s11367-013-0638-5

    Google Scholar 

  • Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182

    Article  Google Scholar 

  • Mulugeta D, Stoltenberg DE, Boerboom CM (2001) Weed species–area relationships as influenced by tillage. Weed Sci 49(2):217–223

    Article  CAS  Google Scholar 

  • Nepstad DC, Veríssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Article  CAS  Google Scholar 

  • Olsen DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Ottonetti L, Tucci L, Frizzi F, Chelazzi G, Santini G (2010) Changes in ground-foraging ant assemblages along a disturbance gradient in a tropical agricultural landscape. Ethol Ecol Evol 22(1):73–86

    Article  Google Scholar 

  • Ouchtati N, Doumandji S, Brandmayr P (2012) Comparison of ground beetle (Coleoptera: Carabidae) assemblages in cultivated and natural steppe biotopes of the semi-arid region of Algeria. Afr Entomol 20(1):134–143

    Article  Google Scholar 

  • Prendergast JR (2006) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20(2):210–216

    Article  Google Scholar 

  • Riechert SE, Bishop L (1990) Prey control by an assemblage of generalist predators: spiders in garden test systems. Ecology 71(4):1441–1450

    Article  Google Scholar 

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737

    Article  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42(2):281–287

    Article  Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabudding, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14(5):1321–1333

    Article  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654–660

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  • Ulber L, Steinmann H-H, Klimek S, Isselstein J (2009) An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res 49(5):534–543

    Article  Google Scholar 

  • Vandewalle M, de Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Martins da Silva P, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19(10):2921–2947

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Vogtländer JG, Lindeijer E, Witte JPM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. J Clean Prod 12(1):47–57

    Article  Google Scholar 

  • Ward KE, Ward RN (2001) Diversity and abundance of carabid beetles in short-rotation plantings of sweetgum, maize and switchgrass in Alabama. Agrofor Syst 53(3):261–267

    Article  Google Scholar 

  • Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use. Technical University of Denmark, Lyngby

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  • Wilson JD, Whittingham MJ, Bradbury RB (2005) The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis 147(3):453–463

    Article  Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38(3):287–301

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of a collaboration between ExxonMobil Research and Engineering (NJ, USA) and the Department of Environmental Science of the Radboud University Nijmegen (The Netherlands). The authors wish to thank Laura de Baan for providing data and sharing her expertise and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter M. F. Elshout.

Additional information

Responsible editor: Thomas Koellner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elshout, P.M.F., van Zelm, R., Karuppiah, R. et al. A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups. Int J Life Cycle Assess 19, 758–769 (2014). https://doi.org/10.1007/s11367-014-0701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0701-x

Keywords

Navigation