Advertisement

The International Journal of Life Cycle Assessment

, Volume 21, Issue 9, pp 1338–1348 | Cite as

Empirically based uncertainty factors for the pedigree matrix in ecoinvent

  • Andreas Ciroth
  • Stéphanie Muller
  • Bo Weidema
  • Pascal Lesage
THE ECOINVENT DATABASE V3

Abstract

Purpose

Ecoinvent applies a method for estimation of default standard deviations for flow data from characteristics of these flows and the respective processes that are turned into uncertainty factors in a pedigree matrix, starting from qualitative assessments. The uncertainty factors are aggregated to the standard deviation. This approach allows calculating uncertainties for all flows in the ecoinvent database. In ecoinvent 2 the uncertainty factors were provided based on expert judgment, without (documented) empirical foundation. This paper presents (1) a procedure to obtain an empirical foundation for the uncertainty factors that are used in the pedigree approach and (2) a proposal for new uncertainty factors, received by applying the developed procedure. Both the factors and the procedure are a result of a first phase of an ecoinvent project to refine the pedigree matrix approach. A separate paper in the same edition, also the result of the aforementioned project, deals with extending the developed approach to other probability distributions than lognormal (Muller et al.).

Methods

Uncertainty is defined here simply as geometric standard deviation (GSD) of intermediate and elementary exchanges at the unit process level. This fits to the lognormal probability distribution that is assumed as default in ecoinvent 2, and helps to overcome scaling effects in the analysed data. In order to provide the required empirical basis, a broad portfolio of data sources is analysed; it is especially important to consider sources outside of the ecoinvent database to avoid circular reasoning. The ecoinvent pedigree matrix from version 2 is taken as a starting point, skipping the indicator “sample size” since it will not be used in ecoinvent 3. This leads to a pedigree matrix with five data quality indicators, each having five score values. The analysis is conducted as follows: for each matrix indicator and for each data source, indicator scores are set in relation to data sets, building groups of data sets that represent the different data quality indicator scores in the pedigree matrix. The uncertainty in each of the groups is calculated. The uncertainty obtained for the group with the ideal indicator score is set as a reference, and uncertainties for the other groups are set in relation to this reference uncertainty. The obtained ratio will be different from 1, it represents the unexplained uncertainty, additional uncertainty due to a lower data quality, and can be directly used as uncertainty factor candidates.

Results and discussion

The developed approach was able to derive empirically based uncertainty factor candidates for the pedigree matrix in ecoinvent. Uncertainty factors were obtained for all data quality indicators and for almost all indicator scores in the matrix. The factors are the result of the first analysis of several data sources, further analyses and discussions should be used to strengthen their empirical basis. As a consequence, the provided uncertainty factors can change in future. Finally, a few of the qualitative score descriptions in the pedigree matrix left room for interpretation, making their application not ambiguous.

Conclusions and perspectives

An empirical foundation for the uncertainty factors in the pedigree matrix overcomes one main argument against their use, which in turn strengthens the whole pedigree approach for quantitative uncertainty assessment in ecoinvent. This paper provides an approach to obtain an empirical basis for the uncertainty factors, and it provides also empirically based uncertainty factors, for indicator scores in the pedigree matrix. Basic uncertainty factors are not provided, it is recommended to use the factors from ecoinvent 2 for the time being. In the developed procedure, using GSD as the uncertainty measure is essential to overcome scaling effects; it should therefore also be used if the analysed data do not follow a lognormal distribution. As a consequence, uncertainty factors obtained as GSD ratios need to be translated to range estimators relevant for these other distributions. Formulas for this step are provided in a separate paper (Muller et al.). The work presented in this paper could be the starting point for a much broader study to provide a better basis for input uncertainty in LCA, not only in ecoinvent.

Keywords

Data quality Ecoinvent database Empirical Pedigree approach Uncertainty Uncertainty factors 

References

  1. Census (2010) US statistics and census office, http://www.census.gov/. Accessed 7 Oct 2010
  2. Ciroth A (2009a) Cost data quality considerations for eco-efficiency measures. Ecol Econ 68(6):1583–1590CrossRefGoogle Scholar
  3. Ciroth A (2009b) Validierung der Emissionsfaktoren ausgewählter erneuerbarer Energiebereitstellungsketten, Endbericht (final report), commissioned by Umweltbundesamt, Berlin Dessau 2009, www.greendelta.com/Emissionsfaktoren-erneuerbarer.97.0.html?&L=1. Accessed 2 Nov 2011
  4. Ciroth A, Srocka M (2008) How to obtain a precise and representative estimate for parameters in LCA: a case study for the functional unit. Int J Life Cycle Assess 13(3):265–277CrossRefGoogle Scholar
  5. Ciroth A, Weidema B (2009) Mathematical analysis of the ecoinvent LCI database with the purpose of developing new validation tools for the database, presentation, Boston LCA IX, October 2009Google Scholar
  6. Ciroth A, Hagelüken M, Sonnemann GW, Castells F, Fleischer G (2002) Geographical and technological differences in life cycle inventories shown by the use of process models for waste incinerators. Part I: technological and geographical differences. Int J Life Cycle Assess 7(5):295–300, Part II: Int J Life Cycle Assess 7(6):363-368CrossRefGoogle Scholar
  7. Ciroth A, Fleischer G, Steinbach J (2004) Uncertainty calculation in life cycle assessments—a combined model of simulation and approximation. Int J Life Cycle Assess 9(4):216–226CrossRefGoogle Scholar
  8. Ciroth A, Muller St, Weidema B (2012) Refining the pedigree matrix approach in ecoinvent, project report for ecoinvent, May 2012, final draft reportGoogle Scholar
  9. EPER (2010) European pollutant emission register. www.eper.ec.europa.eu/. Accessed 7 Oct 2010
  10. EU (1998) Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC, Official Journal L 350, 28/12/1998 P. 0058–0068Google Scholar
  11. Eurostat (2010) Eurostat central database, http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database. Accessed 7 Oct 2010
  12. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G, Spielmann M (2004) Overview and Methodology. Final report ecoinvent 2000 No. 1, Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  13. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10(1):3–9CrossRefGoogle Scholar
  14. Funtowicz S, Ravetz JR (1990) Uncertainty and quality in science for policy. Kluwer, DordrechtCrossRefGoogle Scholar
  15. GEMIS (2010) GEMIS, Global Emission Model for Integrated Systems, version 4.6, www.gemis.de. Accessed 7 Oct 2010
  16. GREET (2009) http://www.transportation.anl.gov/modeling_simulation/GREET/index.html, GREET model fuel cycle, version 1.8c.0, 2009. Accessed 2 Nov 2011
  17. Kent JT (1983) Information gain and a general measure of correlation. Biometrika 70(1):163–173CrossRefGoogle Scholar
  18. Lundie S et al (2004) Australian dairy farm data, 2004, unpublishedGoogle Scholar
  19. NATS (2011) North American Transportation Statistics database, http://nats.sct.gob.mx/. Accessed 2 Nov 2011
  20. ProBas (2010) ProBas database of the German EPA, www.probas.umweltbundesamt.de. Accessed 7 Oct 2010
  21. PRTR (2010) The European Pollutant Release and Transfer Register, http://prtr.ec.europa.eu/. Accessed 7 Oct 2010
  22. van der Sluijs JR, Kloprogge PJ, Risbey J, Ravetz J (2003) Towards a synthesis of qualitative and quantitative uncertainty assessment: application of the numeral, unit, spread, assessment, pedigree (NUSAP) system, International Workshop on Uncertainty, Sensitivity, and Parameter Estimation for Multimedia Environmental Modeling, Rockville, USAGoogle Scholar
  23. Weidema BP (1998) Multi-user test of the data quality matrix for product life cycle inventory data. Int J Life Cycle Assess 3(5):259–265CrossRefGoogle Scholar
  24. Weidema BP, Wesnæs MS (1996) Data quality management for life cycle inventories—an example of using data quality indicators. J Cleaner Prod 4:167–174CrossRefGoogle Scholar
  25. ZSE (2010) German CO2 Emission trading institution, http://www.dehst.de/. Accessed 7 Oct 2010

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Ciroth
    • 1
  • Stéphanie Muller
    • 2
  • Bo Weidema
    • 3
    • 4
  • Pascal Lesage
    • 2
  1. 1.GreenDelta GmbHBerlinGermany
  2. 2.CIRAIG, Department of Chemical EngineeringPolytechnique MontréalMontréalCanada
  3. 3.Ecoinvent CentreSt-GallenSwitzerland
  4. 4.Aalborg UniversityAalborgDenmark

Personalised recommendations