Skip to main content

Advertisement

Log in

LCA applied to perennial cropping systems: a review focused on the farm stage

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Perennial crops globally provide a lot of fruit and other food products. They may also provide feedstock for bioenergy and have been, notably to this end, the subject of several LCA-based studies mostly focusing on energy and GHG balances. The purpose of this review was to investigate the relevance of LCAs on perennial crops, especially focusing on how the perennial crop specificities were accounted for in the farm stage modelling.

Methods

More than 100 papers were reviewed covering 14 products from perennial crops: apple, banana (managed over several years), orange and other citrus fruits, cocoa, coconut, coffee, grape fruit, Jatropha oil, kiwi fruit, palm oil, olive, pear and sugarcane. These papers were classified into three categories according to the comprehensiveness of the LCA study and depending on whether they were peer-reviewed or not. An in-depth analysis of the goal and scope, data origin for farming systems, modelling approach for the perennial cropping systems and methods and data for field emissions helped reveal the more critical issues and design some key recommendations to account better for perennial cropping systems in LCA.

Results and discussion

In the vast majority of the reviewed papers, very little attention was paid on integrating the perennial cropping cycle in the LCA. It is especially true for bioenergy LCA-based studies that often mostly focused on the industrial transformation without detailing the agricultural raw material production, although it might contribute to a large extent to the studied impacts. Some key parameters, such as the length of the crop cycle, the immature and unproductive phase or the biannual yield alternance, were mostly not accounted for. Moreover, the lack of conceptual modelling of the perennial cycle was not balanced by any attempt to represent the temporal variability of the system with a comprehensive inventory of crop managements and field emissions over several years.

Conclusions

According to the reviewed papers and complementary references, we identified the gaps in current LCA of perennial cropping systems and proposed a road map for scientific researches to help fill-in the knowledge-based gaps. We also made some methodological recommendations in order to account better for the perennial cycle within LCA considering the aim of the study and data availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. http://ec.europa.eu/agriculture/envir/report/fr/lex_fr/report.htm

  2. http://botanydictionary.org/perennial.html

  3. Data retrieved from http://faostat.fao.org

  4. PAS2050 by BSI (2011) specification for the assessment of the life cycle greenhouse gas emissions of goods and services by The British Standards Institution. 45 p

  5. Currently developed by the ISO

  6. ILCD developed by the European Commission-Joint Research Centre–Institute for Environment and Sustainability (2011) International Reference Life Cycle Data System (ILCD) Handbook—Recommendations for Life Cycle Impact Assessment in the European context. First edition November 2011. EUR 24571 EN. Luxemburg. Publications Office of the European Union; 2011. 159p

References

  • Achten WMJ, Almeida J, Fobelets V, Bolle E, Mathijs E et al (2010a) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energ 87:3652–3660

    Article  CAS  Google Scholar 

  • Achten WMJ, Vandenbempt P, Almeida J, Mathijs E, Muys B (2010b) Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon. Environ Sci Technol 44:4809–4815

    Article  CAS  Google Scholar 

  • ADEME (2010) Analyses de Cycle de Vie appliquées aux biocarburants de première génération consommés en France. Etude réalisée pour le compte de l’ADEME, du MEEDDM, MAAP, et de France Agrimer par BIO Intelligence Service, 236 p

  • Almeida J, Achten WMJ, Duarte MP, Mendes B, Muys B (2011) Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment. Environ Sci Techno 45:5447–5453

    Article  CAS  Google Scholar 

  • Angarita EEY, Lora EES, da Costa RE, Torres EA (2009) The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renew Energ 34:2905–2913

    Article  CAS  Google Scholar 

  • Aranda A, Scarpellini S, Zabalza I (2005) Economic and environmental analysis of the wine bottle production in Spain by means of life cycle assessment. Int J Agr Resour Govern Ecol 4(2):178–191

    Google Scholar 

  • Ardente F, Beccali G, Cellura M, Marvuglia A (2006) POEMS: a case study of an Italian wine-producing firm. Environ Manage 38:350–364

    Article  Google Scholar 

  • Arvidsson R, Persson S, Fröling M, Svanström M (2011) Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J Cleaner Prod 19:129–137

    Article  CAS  Google Scholar 

  • Audsley E (Coord.), Alber S, Clift R, Cowell S, Crettaz P, Gaillard G et al (1997) Harmonisation of environmental life cycle assessment for agriculture. Final Report. Concerted Action AIR3-CT94-2028. European Commission. DG VI Agriculture. SRI, Silsoe, UK

  • Avraamides M, Fatta D (2008) Resource consumption and emissions from olive oil production: a life cycle inventory case study in Cyprus. J Cleaner Prod 16:809–821

    Article  Google Scholar 

  • Barlow J, Gardner T, Araujo I, Avila-Pires T, Bonaldo A et al (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci 104:18555–18560

    Article  CAS  Google Scholar 

  • Basset-Mens C, Anibar L, Durand P, van der Werf HMG (2006) Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results. Sci Total Environ 367:367–382

    Article  CAS  Google Scholar 

  • Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the Agrofood sector: life cycle assessment of Italian citrus-based products. Environ Manage 43:707–724

    Article  Google Scholar 

  • Beccali M, Cellura M, Iudicello M, Mistretta M (2010) Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios. J Environ Manage 91:1415–1428

    Article  CAS  Google Scholar 

  • Bessou C, Lehuger S, Gabrielle B, Mary B (2012) Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region. France Int J Life Cycle Assess. doi:10.1007/s11367-012-0457-0

  • Bonneau X (1998) Recherche sur les facteurs limitant la production végétale en conditions de stress hydrique. Cas du cocotier à Gunung Batin (Indonésie) : rôles du chlore dans l’économie de l’eau. Ph.D. Dissertation, AgroParisTech, Paris. 196 p

  • Botha T, von Blottnitz H (2006) A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energ Policy 34:2654–2661

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16:1058

    Article  CAS  Google Scholar 

  • Brandão M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35:2323–2336

    Article  CAS  Google Scholar 

  • Brandão M, Milà i Canals L (2012) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess. doi:10.1007/s11367-012-0381-3

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5:349–357

    Article  CAS  Google Scholar 

  • Busser S, Jungbluth N (2009a) The role of flexible packaging in the life cycle of coffee and butter. Int J Life Cycle Assess 14(1):80–91

    Article  Google Scholar 

  • Busser S, Jungbluth N (2009b) LCA of chocolate packed in aluminium foil based packaging. ESU-services GmbH executive summary report for the German Aluminium Association (GDA)

  • Cappelletti GM, Nicoletti GM, Russo C (2010) Life cycle assessment (LCA) of Spanish-style green table olives. Ital J Food Sci 22:3–14

    Google Scholar 

  • Cardoso I, Guijt I, Franco F, Carvalho A, Ferreira Neto P (2001) Continual learning for agroforestry system design: university, NGO and farmer partnership in Minas Gerais, Brazil. Agr Syst 69:235–257

    Article  Google Scholar 

  • Cerutti AK, Bruun S, Beccaro GL, Bounous G (2011) A review of studies applying environmental impact assessment methods on fruit production systems. J Environ Manage 92:2277–2286

    Article  Google Scholar 

  • Chavalparit O, Rulkens W, Mol APJ, Khaodhair S (2006) Options for environmental sustainability of the crude palm oil industry in Thailand through enhancement of industrial ecosystems. Environ Dev Sustain 8:271–287

    Article  Google Scholar 

  • Chen SS (2008) The LCA approach to illustrate palm oil’s sustainability advantage. Proceedings of Int’l Palm Oil Sustainability Conference, Kota Kinabalu, Sabah. p 11

  • Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW et al (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681

    Article  CAS  Google Scholar 

  • Chuchuoy K, Paengjuntuek W, Usubharatana P, Phungrassami H (2009) Preliminary study of Thailand carbon reduction label: a case study of crude palm oil production. Eur J Sci Res 34:252–259

    Google Scholar 

  • Cochard B, Adon B, Kouame R, Durand-Gasselin T, Amblard P (2001) Advantages of improved commercial palm oil (Elaeis guinensis Jacq.) seeds. OCL-Ol Corps Gras Lipides 8:654–658

    Google Scholar 

  • Coltro L, Mourad AL, Oliveira PAPLV, Baddini JPOA, Kletecke RM (2006) Environmental profile of Brazilian green coffee. Int J Life Cycle Assess 11(1):16–21

    Article  Google Scholar 

  • Coltro L, Mourad AL, Kletecke RM, Mendonça TA, Germer SPM (2009) Assessing the environmental profile of orange production in Brazil. Int J Life Cycle Assess 14:656–664

    Article  CAS  Google Scholar 

  • Contreras AM, Rosa E, Pérez M, Van Langenhove H, Dewulf J (2009) Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J Cleaner Prod 17:772–779

    Article  Google Scholar 

  • da Costa RE, Lora EE., Angarita EY, Torres E (2006) The energy balance in the production of palm oil biodiesel two case studies: Brazil and Colombia. Proceedings, World Bioenergy

  • de Monte M, Padoano E, Pozzetto D (2005) Alternative coffee packaging: an analysis from a life cycle point of view. J Food Eng 66:405–411

    Article  Google Scholar 

  • de Souza SP, Pacca S, de Ávila MT, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energ 35:2552–2561

    Article  CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M et al (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  • Fearnside PM (2002) Time preference in global warming calculations: a proposal for a unified index. Ecol Econ 41(1):21–31

    Article  Google Scholar 

  • Gazulla C, Raugei M, Fullana-i-Palmer P (2010) Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? Int J Life Cycle Assess 15:330–337

    Article  CAS  Google Scholar 

  • Germer J, Sauerborn J (2008) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10:697–716

    Article  Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001

    Article  Google Scholar 

  • Gmünder SM, Zah R, Bhatacharjee S, Classen M, Mukherjee P et al (2010) Life cycle assessment of village electrification based on straight Jatropha oil in Chhattisgarh, India. Biomass Bioenerg 34:347–355

    Article  CAS  Google Scholar 

  • Graefe S, Dufour D, Giraldo A, Muñoz LA, Mora P et al (2011) Energy and carbon footprints of ethanol production using banana and cooking banana discard: a case study from Costa Rica and Ecuador. Biomass Bioenerg 35:2640–2649

    Article  CAS  Google Scholar 

  • Groot WJ, Borén T (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int J Life Cycle Assess 15:970–984

    Article  CAS  Google Scholar 

  • Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R et al (eds) (2001) Life cycle assessment. An operational guide to the ISO sandards. VROM and CML, Leiden University, The Netherlands

  • Hanssen OJ, Rukke EO, Saugen B, Kolstad J, Hafrom P et al (2007) The environmental effectiveness of the beverage sector in Norway in a factor 10 perspective. Int J Life Cycle Assess 12(4):257–265

    Google Scholar 

  • Härdter R, Fairhurst TH (2003) Oil palm: management for large and sustainable yields. Publishers: Potash & Phosphate Institute (PPI)/Potash & Phosphate Institute of Canada (PPIC) and International Potash Institute (IPI). ISBN 981-04-8485-2. 396 p

  • Harmand M, Avila H, Dambrine E, Skiba U, De Miguel S et al (2007) Nitrogen dynamics and soil nitrate retention in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85(2):125–139

    Article  CAS  Google Scholar 

  • Harsono SS, Prochnow A, Grundmann P, Hansen A, Hallmann C (2012) Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy 4(2):213–228

    Article  CAS  Google Scholar 

  • Hassan MNA, Jaramillo P, Griffin WM (2011) Life cycle GHG emissions from Malaysian oil palm bioenergy development: the impact on transportation sector’s energy security. Energ Policy 39:2615–2625

    Article  CAS  Google Scholar 

  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Smith P (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Glob Change Biol Bioenerg 1(2):154–170

    Article  Google Scholar 

  • Hauschild MZ (2000) Estimating pesticide emissions for LCA of agricultural products. In: Weidema BP, Meeusen MJG (eds) Agricultural data for life cycle assessments, vol. 2. LCANet Food, The Hague, The Netherlands, pp 64–79

  • Henson IE (2004) Modelling carbon sequestration and emissions related to oil palm cultivation and associated land use change in Malaysia. MPOB Technology, Kajang, Malaysia

  • Henson IE (2005) OPRODSIM, a versatile, mechanistic simulation model of oil palm dry matter production and yield. In: Proceedings of PIPOC 2005 International Palm Oil Congress, Agriculture, Biotechnology and Sustainability Conference, 801–832. Kuala Lumpur: Malaysian Palm Oil Board

  • Hergoualc’h K, Skiba U, Harmand JM, Hénault C (2008) Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89:329–345

    Article  Google Scholar 

  • Hirsinger F, Schick KP, Stalmans M (1995) A life-cycle inventory for the production of oleochemical raw materials. Tenside Surf Det 5:420–432

    Google Scholar 

  • Hou J, Zhang P, Yuan X, Zheng Y (2011) Life cycle assessment of biodiesel from soybean, Jatropha and microalgae in China conditions. Renew Sust Energ Rev 15:5081–5091

    Article  CAS  Google Scholar 

  • Humbert S, Loerincik Y, Rossi V, Margni M, Jolliet O (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Cleaner Prod 17(15):1351–1358

    Article  Google Scholar 

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Published: IGES, Japan

  • Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agroforest Syst 81:267–278

    Article  Google Scholar 

  • Jolliet O, Saadé M, Crettaz P, Skaked S (2005) Analyse du cycle de vie: comprendre et réaliser un écobilan. PPUR presses polytechniques. 242 p

  • Jorgensen U, Mortensen J (1997) Perennial crops for fibre and energy use as a tool for fulfilling the Danish strategies on improving surface and ground water quality. SP Rapport-Statens Planteavlsforsog 12–21

  • JRC, EUCAR, CONCAWE (2008) Well-to-wheels study. Version 3, year 2008. http://ies.jrc.ec.europa.eu/our-activities/ support-to-eu-policies/well-to-wheels-analysis/WTW.html

  • Ju LP, Chen B (2011) Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol Model 222(14):2385–2392

    Article  CAS  Google Scholar 

  • Kiniry JR, Cassida KA, Hussey MA, Muir JP, Ocumpaugh WR et al (2005) Switchgrass simulation by the ALMANAC model at diverse sites in the southern US. Biomass Bioenerg 29:419–425

    Article  Google Scholar 

  • Kløverpris J, Wenzel H, Nielsen PH (2008) Life cycle inventory modelling of land use induced by crop consumption—Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13–21

    Google Scholar 

  • Koch S (2003) LCA of biodiesel in Costa Rica. An environmental study on the manufacturing and use of palm oil methyl ester. Project Report. University of Applied Sciences Northwestern Switzerland. 56 p

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment—Part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2009) Life cycle assessment for the production of biodiesel: a case study in Malaysia for palm oil versus Jatropha oil. Biofuels Bioprod Bioref 3:601–612

    Article  CAS  Google Scholar 

  • Laumonier Y, Edin A, Kanninen M, Munandar AW (2010) Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra: implications for carbon stock assessments. Forest Ecol Manage 259:505–513

    Article  Google Scholar 

  • Lewandowski I (1998) Propagation method as an important factor in the growth and development of Miscanthus x giganteus. Ind Crop Prod 8:229–245

    Article  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361

    Article  Google Scholar 

  • Lindeijer E (2000) Review of land use impact methodologies. J Cleaner Prod 8:273–281

    Article  Google Scholar 

  • Liu Y, Langer V, Høgh-Jensen H, Egelyng H (2010) Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. J Cleaner Prod 18:1423–1430

    Article  CAS  Google Scholar 

  • Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13:1613–1619

    Article  CAS  Google Scholar 

  • Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg 32:582–595

    Article  CAS  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D et al (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62

    Article  Google Scholar 

  • Martinez D, Acevedo P, Kafarov V (2010) Life cycle assessment for joint production of biodiesel and bioethanol from African palm. Chem Eng Transac 21:1314–1319

    Google Scholar 

  • Mashoko L, Mbohwa C, Thomas VM (2010) LCA of the South African sugar industry. J Environ Plann Man 53(6):793–807

    Article  Google Scholar 

  • Milà i Canals L (2003) Contributions to LCA methodology for agricultural systems, Site-dependency and soil degradation impact assessment. Ph.D. Thesis. Universitat Auto`noma de Barcelona, Spain (available from http://www.tdx.cesca.es/TDX-1222103-154811/)

  • Milà i Canals L, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agr Ecosyst Environ 114:226–238

    Article  Google Scholar 

  • Milà i Canals L, Romanyà J, Cowell SJ (2007) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in life cycle assessment (LCA). J Cleaner Prod 15:1426–1440

    Article  Google Scholar 

  • Milà i Canals L, Rigarlsford G, Sim S (2012) Land use impact assessment of margarine. Int J Life Cycle Assess. doi:10.1007/s11367-012-0380-4

  • Mithraratne N, McLaren S, Barber A (2008) Carbon footprinting for the Kiwifruit supply chain—report on methodology and scoping study. Landcare research Contract Report LC0708/156, prepared for New Zealand Ministry of Agriculture and Forestry, p 61

  • Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84

    Article  Google Scholar 

  • Mouron PJP, Nemecek T, Scholz RW, Weber P (2006a) Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agr Ecosyst Environ 114:311–322

    Article  Google Scholar 

  • Mouron P, Scholz RW, Nemecek T, Weber O (2006b) Life cycle management on Swiss fruit farms: relating environmental and income indicators for apple-growing. Ecol Econ 58:561–578

    Article  Google Scholar 

  • Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15:172–182

    Article  CAS  Google Scholar 

  • Ndong R, Montrejaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R et al (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1:197–210

    Article  CAS  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems—Ecoinvent report (No. 15. V2.0). Ecoinvent Center

  • Nguyen TLT, Gheewala SH (2008) Life cycle assessment of fuel ethanol from cane molasses in Thailand. Int J Life Cycle Assess 13:301–311

    Article  CAS  Google Scholar 

  • Nilsson K, Flysjö A, Davis J, Sim S, Unger N et al (2010) Comparative life cycle assessment of margarine and butter consumed in the UK, Germany and France. Int J Life Cycle Assess 15:916–926

    Article  CAS  Google Scholar 

  • Ntiamoah A, Afrane G (2008) Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. J Cleaner Prod 16:1735–1740

    Article  Google Scholar 

  • Ometto AR, Hauschild MZ, Roma WNL (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236–247

    Article  CAS  Google Scholar 

  • Page G, Kelly T, Minor M, Cameron E (2011) Modeling carbon footprints of organic orchard production systems to address carbon trading: an approach based on life cycle assessment. Hort Sci 46:324–327

    CAS  Google Scholar 

  • Pandey KK, Pragya N, Sahoo PK (2011) Life cycle assessment of small-scale high-input Jatropha biodiesel production in India. Appl Energ 88:4831–4839

    Article  Google Scholar 

  • Papong S, Chom-In T, Noksa-nga S, Malakul P (2010) Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand. Energ Policy 38:226–233

    Article  CAS  Google Scholar 

  • Pizzigallo ACI, Granai C, Borsa S (2008) The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J Environ Manage 86:396–406

    Article  CAS  Google Scholar 

  • Pleanjai S, Gheewala SH (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl Energ 86:S209–S214

    Article  CAS  Google Scholar 

  • Pleanjai S, Gheewala SH, Garivait S (2009) Greenhouse gas emissions from the production and use of palm methyl ester in Thailand. Int J Glob Warming 1:418–431

    Article  Google Scholar 

  • Prasuhn V (2006) Erfassung der PO4- Austräge für die Ökobilanzierung SALCA Phosphor. Agroscope Reckanholz-Tänikon ART. 20 p

  • Prueksakorn K, Gheewala SH (2008) Full chain energy analysis of biodiesel from Jatropha curcas L. in Thailand. Environ Sci Technol 42:3388–3393

    Article  CAS  Google Scholar 

  • Prueksakorn K, Gheewala SH, Malakul P, Bonnet S (2010) Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energ Sust Dev 14:1–5

    Article  CAS  Google Scholar 

  • Ramjeawon T (2004) Life cycle assessment of cane-sugar on the island of Mauritius. Int J Life Cycle Assess 9(4):254–260

    Article  Google Scholar 

  • Ramjeawon T (2008) Life cycle assessment of electricity generation from bagasse in Mauritius. J Cleaner Prod 16:1727–1734

    Article  CAS  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Cleaner Prod 16:477–482

    Article  Google Scholar 

  • Reinhardt GA, von Falkenstein E (2011) Environmental assessment of biofuels for transport and the aspects of land use competition. Biomass Bioenerg 35:2315–2322

    Article  CAS  Google Scholar 

  • Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenerg 32:1144–1155

    Article  CAS  Google Scholar 

  • Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15:927–937

    Article  CAS  Google Scholar 

  • Richner W, Oberholzer HR, Freiermuth R, Huguenin O, Walther U (2006) Modell zur Beurteilung des Nitratauswaschungspotenzials in Ökobilanzen-SLACA Nitrat, Agroscope Reckenholz-Tänilon ART, 25 p

  • Salomone R (2003) Life cycle assessment applied to coffee production: investigating environmental impacts to aid decision making for improvements at company level. Food Agr Environ 1(2):295–300

    Google Scholar 

  • Sanjuán N, Úbeda L, Clemente G, Mulet A, Girona F (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agr Res Gov Ecol 4(2):15

    Google Scholar 

  • Schmidt JH (2007) Life cycle inventory of rapeseed oil and palm oil. PhD Thesis: Life cycle inventory report. Department of Development and Planning, Aalborg University, Aalborg, Denmark

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • Siangjaeo S, Gheewala SH, Unnanon K, Chidthaisong A (2011) Implications of land use change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand. Energ Sust Dev 15:1–7

    Article  CAS  Google Scholar 

  • Silalertruksa T, Gheewala SH (2009) Environmental sustainability assessment of bio-ethanol production in Thailand. Energ 34:1933–1946

    Article  CAS  Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforest Syst 78:269–286

    Article  Google Scholar 

  • Sim S, Barry M, Clift R, Cowell SJ (2007) The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int J Life Cycle Assess 12:422–431

    Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228

    Article  CAS  Google Scholar 

  • Stichnothe H, Schuchardt F (2011) Life cycle assessment of two palm oil production systems. Biomass Bioenerg 35:3976–3984

    Article  CAS  Google Scholar 

  • Strapatsa AV, Nanos GD, Tsatsarelis CA (2006) Energy flow for integrated apple production in Greece. Agri Ecosyst Environ 116:176–180

    Article  Google Scholar 

  • Tan RR, Culaba AB, Purvis MRI (2004) Carbon balance implications of coconut biodiesel utilization in the Philippine automotive transport sector. Biomass Bioenerg 26:579–585

    Article  CAS  Google Scholar 

  • Thamsiriroj T, Murphy JD (2009) Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? App Energ 86:595–604

    Article  CAS  Google Scholar 

  • Van der Werf HMG, Gaillard G, Biard Y, Koch P, Basset-Mens C et al (2010) Creation of a public LCA database of French agricultural raw products: agriBALYSE. In: Notarnicola B, Settanni E, Tassielli G, Giungato P (eds) Proceedings of LCA Food 2010, Bari, Italy, September 22–24, 2010, pp 439–442

  • Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use. Department of Manufacturing Engineering and Management, Technical UNivresity of Denmark, Lyngby, Denmark, p 52

  • Wetlands International (2010) A quick scan of peatlands in Malaysia. Wetlands International-Malaysia, Petaling Jaya, 74 pp

  • Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenerg 32:1322–1337

    Article  CAS  Google Scholar 

  • Xunmin O, Xiliang Z, Shiyan C, Qingfang G (2009) Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl Energ 86:197–208

    Article  CAS  Google Scholar 

  • Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. App Energ 86:189–196

    Article  CAS  Google Scholar 

  • Yusoff S, Hansen S (2007) Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. Int J Life Cycle Assess 12:50–58

    Article  CAS  Google Scholar 

  • Zulkifli H, Halimah M, Mohd Basri W, Choo YM (2009) Life cycle assessment for FFB production. PIPOC 2009 Palm oil—balancing ecologies with economics, Kuala Lumpur, Malaysia

Download references

Acknowledgements

The authors, members of the ELSA group (Environmental Life–cycle and Sustainability Assessment www.elsa–lca.org), thank the French Region Languedoc–Roussillon for its support to ELSA. The authors are very grateful to Dr. Eric Malézieux for his valuable comments. We finally want to warmly thank the anonymous reviewers for their comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Bessou.

Additional information

Responsible editor: Seungdo Kim

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessou, C., Basset-Mens, C., Tran, T. et al. LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18, 340–361 (2013). https://doi.org/10.1007/s11367-012-0502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-012-0502-z

Keywords