Skip to main content

Life cycle assessment (LCA) applied to the process industry: a review

Abstract

Purpose

Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.

Method

This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.

Results

The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.

Conclusions

The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander B, Barton G, Petrie J, Romagnoli J (2000) Process synthesis and optimisation tools for environmental design: methodology and structure. Comput Chem Eng 24(2–7):1195–1200

    Article  CAS  Google Scholar 

  2. Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes and products. AICHE J 47(9):1906–1910

    Article  CAS  Google Scholar 

  3. Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2(6):289–295

    Article  CAS  Google Scholar 

  4. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, London

    Google Scholar 

  5. Awuah-Offei K, Adekpedjou A (2011) Application of life cycle assessment in the mining industry. Int J Life Cycle Assess 16(1):82–89

    Article  Google Scholar 

  6. Ayres RU (1995) Life cycle analysis: a critique. Resour Conserv Recycl 14(3–4):199–223

    Article  Google Scholar 

  7. Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73(1):1–21

    Article  CAS  Google Scholar 

  8. Azapagic A, Clift R (1999) The application of life cycle assessment to process optimisation. Comput Chem Eng 23(10):1509–1526

    Article  CAS  Google Scholar 

  9. Bakshi BR, Fiksel J (2003) The quest for sustainability: challenges for process systems engineering. AICHE J 49(6):1350–1358

    Article  CAS  Google Scholar 

  10. Baratto F, Diwekar UM (2005) Life cycle assessment of fuel cell-based APUs. J Power Sources 139(1–2):188–196

    Article  CAS  Google Scholar 

  11. Baratto F, Diwekar UM, Manca D (2005) Impacts assessment and tradeoffs of fuel cell based auxiliary power units: part II. Environmental and health impacts, LCA, and multi-objective optimization. J Power Sources 139(1–2):214–222

    Article  CAS  Google Scholar 

  12. Benko T, Mizsey P (2007) Comparison of flue gas desulphurization processes based on life cycle assessment. Chem Eng 51(2):19–27

    CAS  Google Scholar 

  13. Berkhout F, Howes R (1997) The adoption of life-cycle approaches by industry: patterns and impacts. Resour Conserv Recycl 20(2):71–94

    Article  Google Scholar 

  14. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067

    CAS  Google Scholar 

  15. Buchgeister J (2010) Exergoenvironmental analysis—a new approach to support the design for environment of chemical processes? Chem Eng Technol 33(4):593–602

    Article  CAS  Google Scholar 

  16. Burgess AA, Brennan DJ (2001) Application of life cycle assessment to chemical processes. Chem Eng Sci 56(8):2589–2604

    Article  CAS  Google Scholar 

  17. Chevalier J, Rousseaux P, Benoit VR, Benadda B (2003) Environmental assessment of flue gas cleaning processes of municipal solid waste incinerators by means of the life cycle assessment approach. Chem Eng Sci 58(10):2053–2064

    Article  CAS  Google Scholar 

  18. Da Silva PRS, Amaral FG (2009) An integrated methodology for environmental impacts and costs evaluation in industrial processes. J Clean Prod 17(15):1339–1350

    Article  Google Scholar 

  19. Dietz A, Azzaro-Pantel C, Pibouleau L, Domenech S (2006) Multiobjective optimization for multiproduct batch plant design under economic and environmental considerations. Comput Chem Eng 30(4):599–613

    Article  CAS  Google Scholar 

  20. Dreyer L, Niemann A, Hauschild M (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Int J Life Cycle Assess 8(4):191–200

    Article  CAS  Google Scholar 

  21. Earles J, Halog A (2009) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16(5):445–453

    Article  Google Scholar 

  22. Eliceche AM, Corvalán SM, Martínez P (2007) Environmental life cycle impact as a tool for process optimisation of a utility plant. Comput Chem Eng 31(5–6):648–656

    Article  CAS  Google Scholar 

  23. Ernzer M, Lindahl M, Masui K, Sakao T (2003) An international study on utilization of design for environment methods (DfE)—a pre-study. Paper presented at 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 8–11 December

  24. European Commission (2010) International Reference Life Cycle Data System (ILCD) handbook—general guide for life cycle assessment. European Commission, Joint Research Centre and Institute for Environment and Sustainability

  25. Finnveden G, Johansson J, Lind P, Moberg Å (2005) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229

    Article  Google Scholar 

  26. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  27. Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10(1):3–9

    Article  CAS  Google Scholar 

  28. Fuchs VJ, Mihelcic JR, Gierke JS (2011) Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions. Water Res 45:2073–2081

    Article  CAS  Google Scholar 

  29. Furuholt E (1995) Life cycle assessment of gasoline and diesel. Resour Conserv Recycl 14(3–4):251–263

    Article  Google Scholar 

  30. Gasafi E, Meyer L, Schebek L (2003) Using life-cycle assessment in process design. J Ind Ecol 7(3–4):75–91

    Article  CAS  Google Scholar 

  31. Gerber L, Gassner M, Maréchal F (2011) Systematic integration of LCA in process systems design: application to combined fuel and electricity production from lignocellulosic biomass. Comput Chem Eng 35(7):1265–1280

    Article  CAS  Google Scholar 

  32. Gillani ST, Belaud J-P, Sablayrolles C, Vignoles M, Le Lann J-M (2010) Review of life cycle assessment in agro-chemical processes. Chem Prod Process Model 5(1):1–26

    CAS  Google Scholar 

  33. Grossmann IE, Westerberg AW (2000) Research challenges in process systems engineering. AICHE J 46(9):1700–1703

    Article  CAS  Google Scholar 

  34. Grossmann IE, Chen B, Arthur WW (2004) Challenges in the new millennium: product discovery and design, enterprise and supply chain optimization, global life cycle assessment. Comp Chem Eng 29(1):29–39

    Article  CAS  Google Scholar 

  35. Guinée JB, Gorée M, Heijungs R, Huppes GR, Kleijn R, De Koning A, Van Oers L, Sleeswijk A, Suh S, Udo de Haes HA, De Bruijn H, Van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment—operational guide to the ISO standards. Kluwer, Leiden

    Google Scholar 

  36. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96

    Article  Google Scholar 

  37. Harold MP, Ogunnaike BA (2000) Process engineering in the evolving chemical industry. AICHE J 46(11):2123–2127

    Article  CAS  Google Scholar 

  38. Hauschild MZ, Jeswiet J, Alting L (2004) Design for environment—do we get the focus right? CIRP Ann Manuf Technol 53(1):1–4

    Article  Google Scholar 

  39. Hermann BG, Kroeze C, Jawjit W (2007) Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. J Clean Prod 15(18):1787–1796

    Article  Google Scholar 

  40. ISO (1997) NF EN ISO 14040:1997—Environmental management—life cycle assessment—principles and framework. AFNOR

  41. ISO (2003) XP ISO/TR 14062:2002—Environmental management—integrating environmental aspects into product design and development. AFNOR

  42. ISO (2006) NF EN ISO 14040:2006—Environmental management—life cycle assessment—principles and framework. AFNOR

  43. Jiménez-Gonzalez C, Kim S, Overcash M (2000) Methodology for developing gate-to-gate life cycle inventory information. Int J Life Cycle Assess 5(3):153–159

    Article  Google Scholar 

  44. Jolliet O, MargniM CR, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330

    Article  Google Scholar 

  45. Jolliet O, Saadé M, Crettaz P (2005) Analyse du cycle de vie, comprendre et réaliser un écobilan (Life cycle assessment: understand and perform an Eco-balance). Presses polytechniques et universitaires romandes, Lausanne

    Google Scholar 

  46. Kenthorai Raman J, Foo Wang Ting V, Pogaku R (2011) Life cycle assessment of biodiesel production using alkali, soluble and immobilized enzyme catalyst processes. Biomass Bioenergy 35(10):4221–4229

    Article  Google Scholar 

  47. Keoleian GA (1993) The application of life cycle assessment to design. J Clean Prod 1(3–4):143–149

    Article  Google Scholar 

  48. Kikuchi Y, Mayumi K, Hirao M, Ferraris GB (2010) Integration of CAPE and LCA tools in environmentally-conscious process design: a case study on biomass-derived resin. In 20th European Symposium on Computer Aided Process Engineering

  49. Kniel GE, Delmarco K, Petrie JG (1996) Life cycle assessment applied to process design: environmental and economic analysis and optimization of a nitric acid plant. Environ Prog 15(4):221–228

    Article  CAS  Google Scholar 

  50. Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29(14):1443–1450

    Article  CAS  Google Scholar 

  51. Lewandowska A (2011) Environmental life cycle assessment as a tool for identification and assessment of environmental aspects in environmental management systems (EMS) part 1: methodology. Int J Life Cycle Assess 16:1–9

    Article  Google Scholar 

  52. Lim S, Lee KT (2011) Parallel production of biodiesel and bioethanol in palm-oil-based biorefineries: life cycle assessment on the energy and greenhouse gases emissions. Biofuels, Bioprod Biorefin 5(2):132–150

    Article  CAS  Google Scholar 

  53. Mann MK, Spath PL, Craig KR (1996) Economic and life-cycle assessment of an integrated biomass gasification combined cycle system. Paper presented at 31st Intersociety Energy Conversion Engineering Conference

  54. Morgan RK (1998) Environmental impact assessment: a methodological perspective. Kluwer, Norwell

    Google Scholar 

  55. Ndong R, Montrejaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. Global Change Biol Bioenergy 1(3):197–210

    Article  CAS  Google Scholar 

  56. Neupane B, Halog A, Dhungel S (2010) Attributional life cycle assessment of woodchips for bioethanol production. J Clean Prod 5(2):132–150

    Google Scholar 

  57. Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15(8–9):838–848

    Article  Google Scholar 

  58. Olsen SI, Christensen FM, Hauschild MZ, Pedersen F, Larsen HF, Tørsløv J (2001) Life cycle impact assessment and risk assessment of chemicals—a methodological comparison. Environ Impact Assess Rev 21(4):385–404

    Article  Google Scholar 

  59. Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39

    Article  Google Scholar 

  60. Owens JW (1997) Life-cycle assessment: constraints on moving from inventory to impact assessment. J Ind Ecol 1(1):37–49

    Article  Google Scholar 

  61. Pearce D, Atkinson G, Mourato S (2006) Cost–benefit analysis and the environment: recent developments. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  62. Pehnt M (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energ 31(1):55–71

    Article  Google Scholar 

  63. Pehnt M, Henkel H (2009) Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int J Greenh Gas Con 3(1):49–66

    Article  CAS  Google Scholar 

  64. Pennington DW, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rydberg T, Rebitzer G (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739

    Article  CAS  Google Scholar 

  65. Portha JF, Jaubert JN, Louret S, Pons MN (2010) Life cycle assessment applied to naphtha catalytic reforming. Oil Gas Sci Technol 65(5):793–805

    Article  CAS  Google Scholar 

  66. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema BP, Pennington DW (2004) Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30(5):701–720

    Article  CAS  Google Scholar 

  67. Renó MLG, Lora EES, Palacio JCE, Venturini OJ, Buchgeister J, Almazan O (2011) A LCA (life cycle assessment) of the methanol production from sugarcane bagasse. Energy 36(6):3716–3726

    Article  Google Scholar 

  68. Sablayrolles C, Gabrielle B, Montrejaud-Vignoles M (2010) Life cycle assessment of biosolids land application and evaluation of the factors impacting human toxicity through plant uptake. J Ind Ecol 14(2):231–241

    Article  CAS  Google Scholar 

  69. Scipioni A, Mazzi A, Niero M, Boatto T (2009) LCA to choose among alternative design solutions: the case study of a new Italian incineration line. Waste Manag 29(9):2462–2474

    Article  CAS  Google Scholar 

  70. Seager TP, Theis TL (2002) A uniform definition and quantitative basis for industrial ecology. J Clean Prod 10(3):225–235

    Article  Google Scholar 

  71. Serres N, Tidu D, Sankare S, Hlawka FO (2011) Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment. J Clean Prod 19(9–10):1117–1124

    Article  CAS  Google Scholar 

  72. SETAC (1993) Guidelines for life cycle assessment: a ‘code of practice’. Paper presented at SETAC Work-shop, 31 March-3 April, Sesimbra, Portugal

  73. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555

    Article  CAS  Google Scholar 

  74. Sroufe R, Curkovic S, Montabon F, Melnyk S (2001) The new product design process and design for environment—“crossing the chasm”. Int J Oper Prod Man 20(2):267–291

    Article  Google Scholar 

  75. Stefanis SK, Livingston AG, Pistikopoulos EN (1995) Minimizing the environmental impact of process plants: a process systems methodology. Comput Chem Eng 19(Supplement 1):39–44

    Article  Google Scholar 

  76. Suh S, Huppes G (2005) Methods for life cycle inventory of a product. J Clean Prod 13(7):687–697

    Article  Google Scholar 

  77. Tangsubkul N, Parameshwaran K, Lundie S, Fane AG, Waite TD (2006) Environmental life cycle assessment of the microfiltration process. J Membr Sci 284(1–2):214–226

    Article  CAS  Google Scholar 

  78. Telenko C, Seepersad CC, Webber ME (2008) A compilation of design for environment principles and guidelines. Paper presented at IDETC/CIE International Design Engineering Technical Conferences & Computers an Information in Engineering Conference, 3–6 August, New York

  79. Thorn MJ, Kraus JL, Parker DR (2011) Life-cycle assessment as a sustainability management tool: strengths, weaknesses, and other considerations. Environ Qual Manag 20(3):1–10

    Article  Google Scholar 

  80. UNEP and SETAC (2011) Global guidance principles for life cycle assessment databases—a basis for greener processes and products. UNEP, SETAC

  81. Young P, Byrne G, Cotterell M (1997) Manufacturing and the environment. Int J Adv Manuf Technol 13(7):488–493

    Article  Google Scholar 

Download references

Acknowledgments

The financial support allocated to this project by the French National Research Agency (ANR) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leslie Jacquemin.

Additional information

Responsible editor: Sangwon Suh

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacquemin, L., Pontalier, PY. & Sablayrolles, C. Life cycle assessment (LCA) applied to the process industry: a review. Int J Life Cycle Assess 17, 1028–1041 (2012). https://doi.org/10.1007/s11367-012-0432-9

Download citation

Keywords

  • Life cycle assessment
  • Process systems engineering
  • Environmental design and optimization
  • Eco-friendly processes
  • Industrial ecology