Advertisement

A comparative life cycle assessment of two treatment technologies for the Grey Lanaset G textile dye: biodegradation by Trametes versicolor and granular activated carbon adsorption

  • Xavier GabarrellEmail author
  • Mercè Font
  • Teresa Vicent
  • Gloria Caminal
  • Montserrat Sarrà
  • Paqui Blánquez
LIFE CYCLE IMPACT ASSESSMENT (LCIA)

Abstract

Purpose

The aim of this study is to use life cycle assessment (LCA) to compare the relative environmental performance of the treatment using Trametes versicolor with a common method such as activated carbon adsorption. This comparison will evaluate potential environmental impacts of the two processes. This work compiles life cycle inventory data for a biological process that may be useful for other emergent biotechnological processes in water and waste management. LCA was performed to evaluate the use of a new technology for the removal of a model metal-complex dye, Grey Lanaset G, from textile wastewater by means of the fungus T. versicolor. This biological treatment was compared with a conventional coal-based activated carbon adsorption treatment to determine which alternative is preferable from an environmental point of view.

Materials and methods

The study is based on experimental research that has tested the novel process at the pilot scale. The analysis of the biological system ranges from the production of the electricity and ingredients required for the growth of the fungus and ends with the composting of the residual biomass from the process. The analysis of the activated carbon system includes the production of the adsorbent material and the electricity needed for the treatment and regeneration of the spent activated carbon. Seven indicators that measure the environmental performance of these technologies are included in the LCA. The indicators used are climate change, ozone depletion, human toxicity, photochemical oxidant formation, terrestial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, metal depletion and fossil depletion.

Results

The results show that the energy use throughout the biological process, mainly for sterilisation and aeration, accounts for the major environmental impacts with the inoculum sterilisation being the most critical determinant. Nevertheless, the biological treatment has lower impacts than the physicochemical system in six of these indicators when steam is generated directly on site. A low-grade carbon source as an alternative to glucose might contribute to reduce the eutrophication impact of this process.

Conclusions

The LCA shows that the biological treatment process using the fungus T. versicolor to remove Grey Lanaset G offers important environmental advantages in comparison with the traditional activated carbon adsorption method. This study also provides environmental data and an indication of the potential impacts of characteristic processes that may be of interest for other applications in the field of biological waste treatment and wastewater treatment involving white-rot fungi.

Keywords

Activated carbon Life cycle assessment Metal-complex dyes Wastewater treatment White-rot fungi 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation (project CTM2007-60971/TECNO).The Department of Chemical Engineering of the Universitat Autònoma de Barcelona is the Unit of Biochemical Engineering of the Centre de Referència en Biotecnologia de la Generalitat de Catalunya. Authors are members of a Consolidated Research Group of Catalonia (2009 SGR 656 or 2009 SGR 1505).

Supplementary material

11367_2012_385_MOESM1_ESM.xlsx (14 kb)
ESM 1 (XLSX 14 kb)

References

  1. Althaus HJ, Chudacoff M, Hischier R, Jungbluth N, Osses M, Primas A (2007) Life cycle inventories of chemicals. Ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  2. Bayer P, Heuerb E, Karlb U, Finkela M (2005) Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies. Water Res 39(9):1719–1728CrossRefGoogle Scholar
  3. Blánquez P (2005) Development of a pilot scale process for the treatment of the Grey Lanaset G textile dye by Trametes versicolor (in Catalan). PhD. Department of Chemical Engineering, Universitat Autònoma de Barcelona, Catalonia, Spain. ISBN: 84-689-22-88-9Google Scholar
  4. Blánquez P, Caminal G, Sarrà M, Vicent T, Gabarrell X (2002) Olive oil mill waste waters decoloration and detoxification in a bioreactor by the white rot fungus Phanerochaete flavido-alba. Biotechnol Progr 18(3):660–662CrossRefGoogle Scholar
  5. Blánquez P, Casas N, Font X, Gabarrell X, Sarrà M, Caminal G, Vicent T (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38(8):2166–2172CrossRefGoogle Scholar
  6. Blánquez P, Caminal G, Sarrà M, Vicent T (2007) The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor. Chem Eng J 126(2–3):163–169CrossRefGoogle Scholar
  7. Blánquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Biochemistry 43(1):1–7Google Scholar
  8. Borràs E, Blánquez P, Sarrà M, Caminal G, Vicent T (2008) Trametes versicolor pellets production: low-cost medium and scale-up. Biochem Eng J 42(1):61–66CrossRefGoogle Scholar
  9. Casas N, Parella T, Vicent T, Caminal G, Sarrà M (2009) Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75(10):1344–1349CrossRefGoogle Scholar
  10. Cefic (European Chemical Industry Council) (2010) Activated Carbon Producers Association (ACPA). www.cefic.be. Accessed March 2010
  11. Classen M, Althaus HJ, Blaser S, Tuchschmid M, Jungbluth N Doka G, Faist Emmenegger M, Scharnhorst W (2009) Life cycle inventories of metals. Final report Ecoinvent data v2.1, No. 10. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  12. Dones R, Bauer C, Bolliger R, Burger B, Faist Emmenegger M, Frieschknecht R, Heck T, Jungbluth N, Röder A, Tuchschmid M (2007) Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries. Ecoinvent report No. 5. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  13. Euromalt (2010) Facts on EU malting. Brussels, www.coceral.com/cms/beitrag/10012002/238410. Accessed March 2010
  14. European Parliament and Council of the European Union (2008a) Directive 2008/1/EC of the European Parliament and the Council of 15 January 2008 concerning integrated pollution prevention and control. Official Journal of the European Union L24/8, 29.1.2008Google Scholar
  15. European Parliament and Council of the European Union (2008b) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union L 312/3, 22.11.2008Google Scholar
  16. Farré MJ, García-Montaño J, Ruiz N, Muñoz I, Domènech X, Peral J (2007) Life cycle assessment of the removal of Diuron and Linuron herbicides from water using three environmentally friendly technologies. Environ Technol 28(7):819–830CrossRefGoogle Scholar
  17. Font X, Caminal G, Gabarrell X, Romero S, Vicent T (2003) Black liquor detoxification by laccase of Trametes versicolor pellets. J Chem Technol Biotechnol 78(5):548–554CrossRefGoogle Scholar
  18. Font X, Caminal G, Gabarrell X, Vicent T (2006) Treatment of toxic industrial wastewater in fluidized and fixed-bed batch reactors with Trametes versicolor: influence of immobilisation. Environ Technol 27(8):845–854CrossRefGoogle Scholar
  19. García-Montaño J, Ruiz N, Muñoz I, Domènech X, García-Hortal JA, Torrades F, Peral J (2006) Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. J Hazard Mater 138(2):218–225CrossRefGoogle Scholar
  20. Gerngross TU (1999) Can biotechnology move us toward a sustainable energy? Nat Biotechnol 17:541–544CrossRefGoogle Scholar
  21. Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R, ReCiPe (2008) A life cycle impact assessment method which comprises harmonised cathegory indicators at the midpoint level; First edition Report I: characterization;6 January 2009, http://www.lcia-recipe.net
  22. Hischier R, Classen M, Lehmann M, Scharnhorst W (2007) Life cycle inventories of electric and electronic equipment: production, use and disposal. Ecoinvent report No. 18. EMPA/Technology-Society Lab, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland.Google Scholar
  23. Hischier R, Weidema B, Althaus HJ, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemecek T (2009) Implementation of Life cycle impact assessment methods. Ecoinvent report No. 3, v2.1. Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  24. Hutchins RA (1975) Thermal regeneration costs. Chem Eng Prog 71(5):80–86Google Scholar
  25. ISO (2006) ISO 14044: environmental management–life cycle assessment–requirements and guidelines. Switzerland, GenevaGoogle Scholar
  26. Jørgensen KR, Villanueva A, Wenzel H (2004) Use of life cycle assessment as decision-support tool for water reuse and handling of residues at a Danish industrial laundry. Waste Manage Res 22(5):334–345CrossRefGoogle Scholar
  27. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Schleiss K, Spielmann M, Stettler C, Sutter J (2007). Life cycle inventories for bioenergy. Ecoinvent report No. 17. Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  28. Kløverpris JH, Elvig N, Nielsen PH, Nielsen AM, Ratzel O, Karl A (2009) Comparative life cycle assessment of malt-based beer and 100% barley beer. Novozymes. www.novozymes.com
  29. Laborda F, Górriza MP, Bolea E, Castillo JR (2007) Mobilization and speciation of chromium in compost: a methodological approach. Sci Total Environ 373(1):383–390CrossRefGoogle Scholar
  30. Leitat Technological Center (2006) Study of energy efficiency in the textile finishing sector and situation in Catalonia (in Catalan). Report prepared for the Institut Català d’Energia. Institut Català d’Energia, Catalonia, SpainGoogle Scholar
  31. LMC International Ltd (2002) Evaluation of the community policy for starch and starch products. Report prepared for the European Commission, DG Agriculture. LMC International Ltd, Oxford, New York, p 20Google Scholar
  32. Marco-Urrea E (2003) Preliminary study to conduct a risk analysis on the release of Trametes versicolor into the soil: experimental study (in Catalan). Master’s Thesis, Department of Chemical Engineering, Universitat Autònoma de Barcelona, Catalonia, SpainGoogle Scholar
  33. Marco-Urrea E, Gabarrell X, Sarrà M, Caminal G, Vicent T, Reddy CA (2006) Novel aerobic perchloroethylene degradation by the white-rot fungus Trametes versicolor. Environ Sci Technol 40(24):7796–7802CrossRefGoogle Scholar
  34. Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier Ltd, The Netherlands, UK, USA, pp 428–463Google Scholar
  35. Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manage 30(6):983–994CrossRefGoogle Scholar
  36. Moarse GK, Lester JN, Perry R (1994) The environmental and economic impact of key detergent builder systems in the European Union. Imperial College of Science, Technology and Medicine, University of London. Centre Européen d’Études des polyphosphates E.V., Selper Publications, London, UK, p. 53, <www.ceep-phosphates.org/Documents/shwList.asp?NID=4&HID=30>
  37. Muñoz I, Peral J, Ayllón JA, Malato S, Passarinho P, Domènech X (2006a) Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Res 40(19):3533–3540CrossRefGoogle Scholar
  38. Muñoz I, Rieradevall J, Torrades F, Peral J, Domènech X (2006b) Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent. Chemosphere 62(1):9–16CrossRefGoogle Scholar
  39. Muñoz I, Peral J, Ayllón JA, Malato S, Martin MJ, Perrot JY, Vicent M, Domènech X (2007) Life-cycle assessment of a coupled advanced oxidation-biological process for wastewater treatment: comparison with granular activated carbon adsorption. Environ Eng Sci 24(5):638–651CrossRefGoogle Scholar
  40. Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production systems. Final report Ecoinvent v2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, SwitzerlandGoogle Scholar
  41. Patel M, Crank M, Dornburg V, Hermann BG, Roes L, Hüsing B, Overbeek L, Terragni F, Recchia E (2006) Medium and long-term opportunities and risks of the biotechnological production of bulks chemicals from renewable sources—the potential of White Biotechnology. The BREW Project. Report prepared under the European Commission’s GROWTH Programme, DG Research. Utrecht University, Utrecht, The Netherlands, p 70Google Scholar
  42. Poiger T, Richardson SD, Baughman GL (2000) Analysis of anionic metallized azo and formazan dyes by capillary electrophoresis–mass spectrometry. J Chromatogr A 886(1–2):259–270CrossRefGoogle Scholar
  43. PRé Consultants (2010) SimaPro 7.2.2. PRé Consultants, Amersfoort, The NetherlandsGoogle Scholar
  44. EIPPCB (European Integrated Pollution and Prevention Control Bureau) (2003) Integrated pollution prevention and control. Reference document on best available techniques for the textiles industry. European IPPC Bureau, European Commission, Seville, SpainGoogle Scholar
  45. Puzon GJ, Tokala RK, Zhang H, Yonge D, Peyton BM, Xun L (2008) Mobility and recalcitrance of organo–chromium(III) complexes. Chemosphere 70(11):2054–2059CrossRefGoogle Scholar
  46. Rajakumari SP, Kanmani S (2008) Environmental life cycle assessment of zero liquid discharge treatment technologies for textile industries, Tirupur—a case study. J Sci Ind Res 67(6):461–467Google Scholar
  47. Rivela B, Moreira MT, Bornhardt C, Méndez R, Feijoo G (2004) Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries. Environ Sci Technol 38(6):1901–1909CrossRefGoogle Scholar
  48. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol 77(3):247–255CrossRefGoogle Scholar
  49. Romero S, Blánquez P, Caminal G, Font X, Sarrà M, Gabarrell X, Vicent T (2006) Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochem Eng J 31(1):42–47CrossRefGoogle Scholar
  50. Romero-Hernández O (2004) To treat or not to treat? Applying chemical engineering tools and a life cycle approach to assessing the level of sustainability of a clean-up technology. Green Chem 6(8):395–400CrossRefGoogle Scholar
  51. Spielmann M, Bauer C, Dones R, Tuchschmid M (2007) Transport services. Ecoinvent report No. 14, Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar
  52. Sutter J (2007) Life cycle inventories of highly pure chemicals. Ecoinvent report No. 19. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland.Google Scholar
  53. Swiss Centre for Life Cycle Inventories (SCLCI) (2010) Ecoinvent data v2.1. Dübendorf, SwitzerlandGoogle Scholar
  54. Vlasopoulos N, Memon FA, Butler D, Murphy R (2006) Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Sci Total Environ 367(1):58–70CrossRefGoogle Scholar
  55. Zah R, Hischier R (2007) Life cycle inventories of detergents. Ecoinvent report No. 12. Swiss Centre for Life Cycle Inventories, Dübendorf, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xavier Gabarrell
    • 1
    Email author
  • Mercè Font
    • 1
  • Teresa Vicent
    • 2
  • Gloria Caminal
    • 3
  • Montserrat Sarrà
    • 2
  • Paqui Blánquez
    • 2
  1. 1.Sostenipra, Institut de Ciència i Tecnologia Ambientals (ICTA), Chemical Engineering Deparment, Xarxa de Referència en Biotecnologia (XRB) de CatalunyaUniversitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
  2. 2.Departament d’Enginyeria Química, Institut de Ciència i Tecnologia Ambiental, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Unitat de Biocatàlisis Aplicada asociada al IQAC (CSIC-UAB), Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations