Skip to main content
Log in

Addressing speciation in the effect factor for characterisation of freshwater ecotoxicity—the case of copper

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS (USEtox)
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Determination of the ecotoxicity effect factor (EF) in life cycle impact assessment (LCIA) is based on test data reporting the total dissolved concentration of a substance. In spite of the recognised influence of chemical speciation and physico-chemical characteristics of the aquatic systems on toxicity of dissolved metals, these properties are not considered when calculating characterization factors (CFs) for metals. It is hypothesised that the main cause of the variation in reported EC50 values of Cu among published test results lies in different speciation patterns for Cu in the test media, and that the toxicity of Cu is predominantly caused by the free Cu2+ ion. Hence, the free Cu2+ ion concentration should substitute the total dissolved metal concentration when determining the EF.

Materials and methods

The study was based on a review of published ecotoxicity studies reporting acute and chronic EC50 data for Cu to Daphnia magna and to different species of fish and algae. The speciation pattern of Cu in the different media applied in the studies was calculated using the Visual MINTEQ model. EFs were calculated according to the expression applied in the USEtox™ characterization model.

Results and discussion

Reported EC50 values for Cu show variations of one to several orders of magnitude for the same organism, but the study indicates that the large variation is caused by differences in water chemistry of the test media influencing the metal speciation. The relationship between the calculated free Cu2+ ion concentration and reported EC50 values indicates that the aquatic ecotoxicity of Cu to D. magna can be predicted from the free ion concentration. Other results confirm that the free Cu2+ ion concentration depends on the [Cu]/[DOC] ratio since the majority of the total dissolved Cu is present as Cu-DOC complexes when the media contains more than 1 mg/L of DOC, and since Cu in such complexes has limited availability to the test organisms.

Conclusions

These results suggest that speciation should be taken into account in the modelling of both EFs and fate factors for LCIA, and the EF for Cu in the aquatic environment should be based on the concentration of the free Cu2+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen HE (2000) Importance of clean techniques and speciation in assessing water quality for metals. Hum Ecol Risk Assess 6:989–1002

    Article  CAS  Google Scholar 

  • Barata C, Baird DJ, Markich SJ (1998) Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. Aquat Toxicol 42:115–137

    Article  CAS  Google Scholar 

  • Bhavsar SP, Diamond ML, Evans LJ, Gandhi N, Nilsen J, Antunes P (2004) Development of a coupled metal speciation-fate model for surface aquatic systems. Environ Toxicol Chem 23:1376–1385

    Article  CAS  Google Scholar 

  • Bhavsar SP, Gandhi N, Diamond ML, Lock AS, Spiers G, De la Torre MCA (2008) Effects of estimates from different geochemical models on metal fate predicted by coupled speciation-fate models. Environ Toxicol Chem 27:1020–1030

    Article  CAS  Google Scholar 

  • Biesinger KE, Christensen GM (1972) Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia Magna. J Fish Res Board Can 29:1691–1699

    Article  CAS  Google Scholar 

  • Birkved M, Payet J (2003) Accounting of media conditions in the life cycle impact assessment of metals on aquatic ecosystems. SETAC Europe, Hamburg

    Google Scholar 

  • Blaylock BG, Frank ML, Mccarthy JF (1985) Comparative toxicity of copper and acridine to fish, daphnia and algae. Environ Toxicol Chem 4:63–71

    CAS  Google Scholar 

  • Bossuyt BTA, Janssen CR (2003) Acclimation of Daphnia magna to environmentally realistic copper concentrations. Comp Biochem Phy C 136:253–264

    Google Scholar 

  • Bossuyt BTA, De Schamphelaere KAC, Janssen CR (2004) Using the biotic ligand model for predicting the acute sensitivity of Cladoceran dominated communites to copper in natural surface waters. Environ Sci Technol 38:5030–5037

    Article  CAS  Google Scholar 

  • Bossuyt BTA, Escobar YR, Janssen CR (2005) Multigeneration acclimation of Daphnia magna Straus to different bioavailable copper concentrations. Ecotoxicol Environ Saf 61:327–336

    Article  CAS  Google Scholar 

  • Bury NR, Mcgeer JC, Wood CM (1999) Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ Toxicol Chem 18:49–55

    Article  CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion acitivity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. pp 45–102

  • De Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54

    Article  Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2004a) Effects of chronic dietary copper exposure on growth and reproduction of Daphnia magna. Environ Toxicol Chem 23:2038–2047

    Article  Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2004b) Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna. Environ Toxicol Chem 23:1115–1122

    Article  Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255

    Article  Google Scholar 

  • De Schamphelaere KAC, Unamuno VIR, Tack FMG, Vanderdeelen J, Janssen CR (2005) Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere 58:653–658

    Article  Google Scholar 

  • De Schamphelaere KAC, Forrez I, Dierckens K, Sorgeloos P, Janssen CR (2007) Chronic toxicity of dietary copper to Daphnia magna. Aquat Toxicol 81:409–418

    Article  Google Scholar 

  • Diamond ML, Gandhi N, Adams WJ, Atherton J, Bhavsar SP, Bulle C, Campbell PGC, Dubreuil A, Fairbrother A, Farley K, Green A, Guinee J, Hauschild MZ, Huijbregts MAJ, Humbert S, Jensen KS, Jolliet O, Margni M, Mcgeer JC, Peijnenburg WJGM, Rosenbaum R, van de Meent D, Vijver MG (2010) The clearwater consensus: the estimation of metal hazard in fresh water. Int J Life Cycle Assess 15:143–147

    Article  CAS  Google Scholar 

  • Enserink EL, Maasdiepeveen JL, Vanleeuwen CJ (1991) Combined effects of metals—an ecotoxicological evaluation. Water Re 25:679–687

    Article  CAS  Google Scholar 

  • Erickson RJ, Benoit DA, Mattson VR, Nelson HP, Leonard EN (1996) The effects of water chemistry on the toxicity of copper to fathead minnows. Environ Toxicol Chem 15:181–193

    Article  CAS  Google Scholar 

  • Gandhi N, Diamond ML, van de Meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinee J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44:5195–5201

    Article  CAS  Google Scholar 

  • Gandhi N, Huijbregts MAJ, Dvd M, Peijnenburg WJGM, Guinée J, Diamond ML (2011) Implications of geographic variability on comparative toxicity potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere 82:268–277

    Article  CAS  Google Scholar 

  • Geffard O, Geffard A, Chaumot A, Vollat B, Alvarez C, Tusseau-Vuillemin MH, Garric J (2008) Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna. Environ Toxicol Chem 27:1128–1134

    Article  CAS  Google Scholar 

  • Gustafsson JP (2007) Visual Minteq. http://www.lwr.kth.se/english/OurSoftWare/Vminteq/

  • Hauschild M, Pennington D (2002) Indicators for ecotoxicity in life cycle impact assessment. In: Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Klöpffer W, Lindeijer E, Jolliet O, Müler-Wenk R, Olsen D, Pennington D, Potting J, Stehen B (eds) Udo de Haes HA. Striving towards best practice. SETAC Press, Life Cycle Impact Assessment

    Google Scholar 

  • Hauschild MZ, Huijbregts M, Jolliet O, MacLeod M, Margni M, van de Meent DV, Rosenbaum RK, Mckone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42:7032–7037

    Article  CAS  Google Scholar 

  • Heijerick DG, Janssen CR, De Coen WM (2003) The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D-magna: development of a surface response model. Arch Environ Con Tox 44:210–217

    Article  CAS  Google Scholar 

  • Heijerick DG, Bossuyt BTA, De Schamphelaere KAC, Indeherberg M, Mingazzini M, Janssen CR (2005) Effect of varying physicochemistry of European surface waters on the copper toxicity to the green alga Pseudokirchneriella subcapitata. Ecotoxicology 14:661–670

    Article  CAS  Google Scholar 

  • Hickey CW, Vickers ML (1992) Comparison of the sensitivity to heavy-metals and pentachlorophenol of the mayflies Deleatidium spp. and the cladoceran Daphnia magna. New Zeal J Mar Fresh 26:87–93

    Article  CAS  Google Scholar 

  • Hollis L, Mcgeer JC, McDonald DG, Wood CM (2000) Protective effects of calcium against chronic waterborne cadmium exposure to juvenile rainbow trout. Environ Toxicol Chem 19:2725–2734

    Article  CAS  Google Scholar 

  • Hruska J, Kohler S, Laudon H, Bishop K (2003) Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environ Sci Technol 37:1726–1730

    Article  CAS  Google Scholar 

  • Janssen CR, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Van Sprang P (2000) Uncertainties in the environmental risk assessment of metals. Hum Ecol Risk Assess 6:1003–1018

    Article  CAS  Google Scholar 

  • Kim SD, Ma HZ, Allen HE, Cha DK (1999) Influence of dissolved organic matter on the toxicity of copper to Ceriodaphnia dubia: effect of complexation kinetics. Environ Toxicol Chem 18:2433–2437

    Article  CAS  Google Scholar 

  • Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf A 151:147–166

    Article  CAS  Google Scholar 

  • Koivisto S, Ketola M, Walls M (1992) Comparison of 5 cladoceran species in short-term and long-term copper exposure. Hydrobiologia 248:125–136

    Article  CAS  Google Scholar 

  • Koster M, de Groot A, Vijver M, Peijnenburg W (2006) Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biol Biochem 38:1788–1796

    Article  CAS  Google Scholar 

  • Kramer KJM, Jak RG, van Hattum B, Hooftman RN, Zwolsman JJG (2004) Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna. Environ Toxicol Chem 23:2971–2980

    Article  Google Scholar 

  • Larsen HF, Hauschild M (2007) GM-Troph—a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12:79–91

    Article  CAS  Google Scholar 

  • Leblanc GA (1982) Laboratory investigation into the development of resistance of Daphnia magna (Straus) to environmental pollutants. Environ Pollut A 27:309–322

    Article  CAS  Google Scholar 

  • Lee YJ, Elzinga EJ, Reeder RJ (2005) Cu(II) adsorption at the calcite-water interface in the presence of natural organic matter: kinetic studies and molecular-scale characterization. Geochim Cosmochim Acta 69:49–61

    Article  CAS  Google Scholar 

  • Ligthart T, Aboussouan L, van de Meent D, Schönnenbeck M, Hauschild M, Delbeke K, Struijs J, Russel A, Udo de Haes HA, Atherton J, Van Tilborg W, Karman C, korenromp R, Sap G, Baukloh A, Dubreuil A, Adams W, Heijungs R, Jolliet O, de Koning A, Chapman P, Verdonck F, Van der Loos R, Eikelboom R, Kuyper J (2004) Declaration of Apeldoorn in LCIA of non-ferrous metals. UNEP/SETAC Life Cycle Iniative

  • Macdonald A, Silk L, Schwartz M, Playle RC (2002) A lead-gill binding model to predict acute lead toxicity to rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys C 133:227–242

    Article  Google Scholar 

  • Meador JP (1991) The interaction of Ph, dissolved organic-carbon, and total copper in the determination of ionic copper and toxicity. Aquat Toxicol 19:13–31

    Article  CAS  Google Scholar 

  • Meyer JS (1999) A mechanistic explanation for the In(LC50) vs In (hardness) adjustment equation for metals. Environ Sci Technol 33:908–912

    Article  CAS  Google Scholar 

  • Muyssen BTA, Janssen CR (2007) Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna. Ecotoxicol Environ Saf 68:436–442

    Article  CAS  Google Scholar 

  • Nybroe O, Brandt KK, Ibrahim YM, Tom-Petersen A, Holm PE (2008) Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains. Environ Toxicol Chem 27:2246–2252

    Article  CAS  Google Scholar 

  • Pagenkopf GK (1983) Gill surface interaction-model for trace-metal toxicity to fishes—role of complexation, PH, and water hardness. Environ Sci Technol 17:342–347

    Article  CAS  Google Scholar 

  • Paulauskis JD, Winner RW (1988) Effects of water hardness and humic acid on zinc toxicity to Daphnia magna Straus. Aquat Toxicol 12:273–290

    Article  CAS  Google Scholar 

  • Richards JG, Curtis PJ, Burnison BK, Playle RC (2001) Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environ Toxicol Chem 20:1159–1166

    CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, Mckone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Steeman-Nielsen E, Wium-Andersen S (1970) Copper ions as poison in the sea and in freshwater. Mar Biol 6:93–97

    Article  Google Scholar 

  • Strandesen M, Birkved M, Holm PE, Hauschild MZ (2007) Fate and distribution modelling of metals in life cycle impact assessment. Ecol Model 203:327–338

    Article  Google Scholar 

  • Takamura N, Kasai F, Watanabe MM (1990) Unique response of cyanophyceae to copper. J Appl Phycol 2:293–296

    Article  CAS  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    Article  CAS  Google Scholar 

  • Tao S, Long AM, Liu CF, Dawson R (2000) The influence of mucus on copper speciation in the gill microenvironment of carp (Cyprinus carpio). Ecotoxicol Environ Saf 47:59–64

    Article  CAS  Google Scholar 

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48

    Article  CAS  Google Scholar 

  • Vanleeuwen CJ, Buchner JL, Vandijk H (1988) Intermittent flow system for population toxicity studies demonstrated with Daphnia and copper. B Environ Contam Tox 40:496–502

    Article  CAS  Google Scholar 

  • Villavicencio G, Urrestarazu P, Carvajal C, De Schamphelaere KAC, Janssen CR, Torres JC, Rodriguez PH (2005) Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile. Environ Toxicol Chem 24:1287–1299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen S. Christiansen.

Additional information

Responsible editor: Andreas Jørgensen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, K.S., Holm, P.E., Borggaard, O.K. et al. Addressing speciation in the effect factor for characterisation of freshwater ecotoxicity—the case of copper. Int J Life Cycle Assess 16, 761–773 (2011). https://doi.org/10.1007/s11367-011-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-011-0305-7

Keywords

Navigation