Prospective CO2 emissions from energy supplying systems: photovoltaic systems and conventional grid within Spanish frame conditions

  • Antonio Dominguez-Ramos
  • Michael Held
  • Ruben Aldaco
  • Matthias Fischer
  • Angel Irabien


Background, aim, and scope

In order to assess the environmental sustainability of a novel wastewater treatment process based on power an electrochemical reactor by photovoltaic solar modules (photovoltaic solar electrochemical oxidation), a life cycle approach was considered to quantify the CO2 equivalent (CO2-eq.) emissions coming from the two supplying power systems to the electrochemical process: conventional grid power or photovoltaic solar power under Spain frame conditions.

Materials and methods

GaBi 4 software was used to build models to characterize the conventional grid and photovoltaic power generation (corresponding functional unit, 1 kWh). ecoinvent v2.0 was chosen to consider background data. Nine different 2030 scenarios were evaluated versus 2007 reference values to take into account: (a) the progressive change to a greener grid mix in Spain and (b) the improvements in photovoltaic solar technology.


The results showed that, under the nine considered scenarios for 2030, the CO2-eq.per kilowatt hour emissions are always lower than the reference values for 2007 (reductions around 60%). Additionally, the results showed that 2030 values for the CO2-eq.per kilowatt hour emissions coming from the use of photovoltaic modules for power generation are expected to be around 60% lower than for 2007 values.


In order to power an electrochemical process, the direct use of photovoltaic solar energy will give much lower CO2-eq.per kilowatt hour emissions than the supply from conventional grid.


A quantitative study based on life cycle assessment has compared the CO2-eq.per kilowatt hour emissions coming from supplying an electrochemical reactor by conventional grid and by photovoltaic solar modules under Spanish frame conditions and stated that the novel process photovoltaic solar electrochemical oxidation would be a preferred environmental option due to the lower CO2-eq.per kilowatt hour emissions under present and future scenarios.

Recommendations and perspectives

The results would suggest that it is worthy to explore not only the possibilities of this technology but also other electrochemical technologies that can be supplied directly by electricity in order to have a better sustainability performance.


Carbon footprint Electrochemical oxidation Grid mix Photovoltaic solar energy Solar technology Spain Wastewater treatment 


  1. ASIF (2008) Towards a sustainable electricity supply. The solar photovoltaic energy in Spain, Annual Report 2008 (‘Hacia un suministro sostenible de la electricidad. La energía solar fotovoltaica en España. Informe Anual 2008’). Asociación de la Industria Fotovoltaica Española.
  2. Cañizares P, Díaz M, Domínguez JA, García-Gómez J, Rodrigo MA (2002) Electrochemical oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes. Ind Eng Chem Res 41(17):4187–4194CrossRefGoogle Scholar
  3. Dominguez-Ramos A, Aldaco R, Irabien A (2008) Electrochemical oxidation of lignosulfonate: total organic carbon oxidation kinetics. Ind Eng Chem Res 47(24):9848–9853CrossRefGoogle Scholar
  4. Dominguez-Ramos A, Aldaco R, Irabien A (2010) Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate waste-water. J Chem Technol Biotechnol. doi:10.1002/jctb.2370 Google Scholar
  5. ecoinvent (2008) The life cycle inventory data version 2.0. Swiss Center for Life Cycle Inventories.
  6. EPIA (2008) EPIA/production (relative share of technology over time). Accessed in 2009
  7. EPIA and Greenpeace (2008) Solar generation V-2008 solar electricity for over billion people and two million jobs by 2020.
  8. EUPVTP (2007) A strategic research agenda for photovoltaic solar energy technology. Working Group 3 ‘Science, Technology and Applications’ of the EU PV Technology Platform. Under Sixth Framework Programme, contract nº: 513548Google Scholar
  9. Fthenakis VM, Kim HC, Alsema E (2008) Emissions from photovoltaic life cycles. Environ Sci Technol 42(6):2168–2174CrossRefGoogle Scholar
  10. Frankl P, Menichetti E, Raugei M (2005) Final report on technical data, costs and life cycle inventories of PV applications. Under Sixth Framework Programme, Project nº: 502687. NEEDS New Energy Externalities Developments for Sustainability, Deliverable nº 11.2-RS IaGoogle Scholar
  11. GaBi (2008) GaBi 4 software-system and databases for life cycle engineering. Chair of Buildings Physics (University of Stuttgart), PE International.
  12. IChemE (2007) A roadmap for the 21th century chemical engineering. Institution of Chemical Engineers.
  13. IDAE (2005) Plan for renewable energies in Spain 2005–2010 (‘Plan de energías renovables en España 2005–2010’).
  14. ISO (2006a) Environmental management. Life Cycle Assessment. Principles and framework (ISO 14040:2006). International Organization for Standardization, GenevaGoogle Scholar
  15. ISO (2006b) Environmental management. Life Cycle Assessment. Requirements and guidelines (ISO 14044:2006). International Organization for Standardization, GenevaGoogle Scholar
  16. Ito M, Kato K, Komoto K, Kimichi T, Kurokawa K (2008) A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS Modules. Prog Photovolt Res Appl 16(1):17–30CrossRefGoogle Scholar
  17. Jungbluth N (2005) Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog Photovolt Res Appl 13(5):429–446CrossRefGoogle Scholar
  18. Mason JM, Fthenakis VM, Hansen T, Kim HC (2006) Energy pay-back and life cycle CO2 emissions of the BOS in an optimized 3.5 MW PV installation. Prog Photovolt Res Appl 14(2):179–190CrossRefGoogle Scholar
  19. Morales-Acevedo A (2006) Can we improve the record efficiency of CdS/CdTe solar cells? Sol Energy Mater Sol Cells 90(15):2213–2220CrossRefGoogle Scholar
  20. NREL (2007a) National Solar Technology Roadmap: wafer-silicon PV, management report NREL/MP-520-41733 draft version.
  21. NREL (2007b) National Solar Technology Roadmap: film-silicon PV, management report NREL/MP-520-41734 draft version.
  22. NREL (2007c) National Solar Technology Roadmap: CdTe PV, management report NREL/MP-520-41736 draft version.
  23. NREL (2007d) National Solar Technology Roadmap: CIGS PV, management report NREL/MP- 520-41737 draft version.
  24. Odeh NA, Cockerill TT (2008) Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy 36(1):367–380CrossRefGoogle Scholar
  25. Pacca S, Sivaraman D, Keoleian GA (2007) Parameters affecting the life cycle performance of PV technologies and systems. Energ Policy 35(6):3316–3326CrossRefGoogle Scholar
  26. Pehnt M (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energy 31(1):55–71CrossRefGoogle Scholar
  27. Pehnt M, Henkel J (2009) Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int J Greenh Gas Control 3(1):49–66CrossRefGoogle Scholar
  28. Pfatischer R (2008) Evaluation of predicted and real operational data of different thin-film technologies. In: Proceedings from: OTTI Thin Film User Forum—28.01.2009, Würzburg, Germany.
  29. PVGIS (2008) Photovoltaic Geographical Information System (PVGIS). Geographical Assessment of Solar Resource and Performance of Photovoltaic Technology. http:// Accessed in 2008
  30. Raugei M, Frankl P, Alsema E, de Wild-Scholten M, Fthenakis V, Kim HC (2007) Life cycle assessment of present and future photovoltaic systems. In: Proceedings from: AIST Symposium ‘Expectations and Advances Technologies in Renewable Energy’. Chiba, JapanGoogle Scholar
  31. Raugei M, Bargigli S, Ulgiati S (2007b) Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 32(8):1310–1318CrossRefGoogle Scholar
  32. Raugei M, Frankl P (2009) Life cycle impacts and costs of photovoltaic systems: current state of the art and future outlooks. Energy 34(3):392–399CrossRefGoogle Scholar
  33. REE (2008) The Spanish Electrical System 07 (‘El Sistema Eléctrico Español 07’). Red Eléctrica de España.
  34. Salas V, Olias E (2008) Overview of the photovoltaic technology status and perspective in Spain. Renew Sustain Energ Rev 13(5):1049–1057CrossRefGoogle Scholar
  35. SGE (2008) The Energy in Spain 2007 (‘La Energía en España 2007’) Secretaría General de Energía, Ministerio de Industria, Turismo y Comercio, Gobierno de España.
  36. Stoppato A (2008) Life cycle assessment of photovoltaic electricity generation. Energy 33(2):224–232CrossRefGoogle Scholar
  37. UNESA (2007) UNESA’s outlook for electricity generation for 2030 (‘Prospecciones de Generación Eléctrica 2030’). Asociación Española de la Industria Eléctrica.
  38. Viebahn P, Nitsch J, Fischedick M, Esken A, Schüwer D, Supersberger N, Zuberbühler U, Edenhofer O (2007) Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. Int J Greenh Gas Control 1(1):121–133CrossRefGoogle Scholar
  39. Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32(9):1543–1559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Antonio Dominguez-Ramos
    • 1
  • Michael Held
    • 2
  • Ruben Aldaco
    • 1
  • Matthias Fischer
    • 3
  • Angel Irabien
    • 1
  1. 1.Department of Chemical Engineering and Inorganic ChemistryUniversity of CantabriaSantanderSpain
  2. 2.Abteilung Ganzheitliche Bilanzierung, LBPUniversity of StuttgartEchterdingenGermany
  3. 3.Department of Life Cycle EngineeringFraunhofer Institute for Building PhysicsEchterdingenGermany

Personalised recommendations