The International Journal of Life Cycle Assessment

, Volume 14, Issue 6, pp 560–570 | Cite as

Traffic noise in LCA

Part 1: state-of-science and requirement profile for consistent context-sensitive integration of traffic noise in LCA
  • Hans-Jörg Althaus
  • Peter de Haan
  • Roland W. Scholz


Background, aim, and scope

According to some recent studies, noise from road transport is estimated to cause human health effects of the same order of magnitude as the sum of all other emissions from the transport life cycle. Thus, ISO 14′040 implies that traffic noise effects should be considered in life cycle assessment (LCA) studies where transports might play an important role. So far, five methods for the inclusion of noise in LCA have been proposed. However, at present, none of them is implemented in any of the major life cycle inventory (LCI) databases and commonly used in LCA studies. The goal of the present paper is to define a requirement profile for a method to include traffic noise in LCA and to assess the compliance of the five existing methods with this profile. It concludes by identifying necessary cornerstones for a model for noise effects of generic road transports that meets all requirements.

Materials and methods

Requirements for a methodological framework for inclusion of traffic noise effects in LCA are derived from an analysis of how transports are included in 66 case studies published in International Journal of Life Cycle Assessment in 2006 and 2007, in the sustainability reports of ten Swiss companies, as well as on the basis of theoretical considerations. Then, the general compliance of the five existing methods for inclusion of noise in LCA with the postulated requirement profile is assessed.


Six general requirements for a methodological framework for inclusion of traffic noise effects in LCA were identified. A method needs to be applicable for (1) both generic and specific transports, (2) different modes of transport, (3) different vehicles within one mode of transport, (4) transports in different geographic contexts, (5) different temporal contexts, and (6) last but not least, the method needs to be compatible with the ISO standards on LCA. One of the reviewed methods is not specific for transports at all and two are only applicable for specific transports. The other two allow generic and specific road transports to be assessed. The methods either deal with road traffic noise only or they compare noise from different sources, ignoring the fact that not only physical sound levels but also the source of sound determines the effect. Three methods only differentiate between vehicle classes (lorries and passenger cars) while one method differentiates between specific vehicles of the same class. Four of the methods consider the geographic context and three of them differentiate between day- and nighttime traffic.


None of the existing methods for traffic noise integration in LCA complies with the proposed requirement profile. They either lack the genericness for a wide application or they lack the specificity needed for differentiations in LCA studies. There is no method available that allows for appropriate inter- or intramodal comparison of traffic noise effects. Thus, the benefit of the existing methods is limited. They can, in the better cases, only demonstrate the relative importance of road or rail traffic noise effects compared to the nonnoise-related effects of transportation.


Currently, none of the major LCI databases includes traffic noise indicators. Thus, noise effects are usually not considered in LCA studies. We introduce a requirement profile for methods that allow the inclusion of noise in LCI. Due to the estimated significance of noise in transport LCA, this inclusion will change the overall results of many LCA studies. None of the existing methods fully complies with the requirement profile. Two of the methods can be modified and extended for inclusion in generic LCI databases. A third model allows for intermodal comparison. From an LCA perspective, all methods include weaknesses and need to be amended in order to make them widely usable.

Recommendations and perspectives

In part 2 of this paper, an in-depth analysis of the promising methods is provided, improvement potential is evaluated, and a new context-sensitive framework for the consistent LCI modeling of noise emissions from road transportation is presented. Appropriate methods for modeling rail and air traffic noise will have to be developed in the future in order to arrive at a methodological framework fully compliant with the requirement profile. Furthermore, future research is needed to identify appropriate methods for impact assessment.


Additional noise emission LCA LCI Traffic noise Transport 

Supplementary material

11367_2009_116_MOESM1_ESM.pdf (5 mb)
ESM 1LCA methodology (PDF 5127 kb)
11367_2009_116_MOESM2_ESM.pdf (100 kb)
ESM 2LCA methodology (PDF 100 kb)


  1. Althaus H-J, De Haan P, Scholz RW (2009) A methodological framework for consistent context-sensitive integration of noise effects from road transports in LCA. Part 2-analysis of existing methods and proposition of new framework. Int J Life Cycle Assess. doi:10.1007/s11367-009-0116-2
  2. ASTRA, BfS (2006a) Schweizerische Strassenverkehrszählung 2005—Datenbank. Bundesamt für Statistik, NeuchatelGoogle Scholar
  3. ASTRA, BfS (2006b) Schweizerische Strassenverkehrszählung 2005. Bundesamt für Strassen, NeuchatelGoogle Scholar
  4. Banfi S, Doll C, Maibach M, Rothengatter W, Schenkel P, Sieber N, Zuber J (2000) External cost of traffic—accident, environmental and congestion costs in western Europe. INFRAS, ZürichGoogle Scholar
  5. Berglund B, Lindvall T, Schwela DH (1999) Guidelines for community noise. WHO—expert task force meeting. WHO, LondonGoogle Scholar
  6. Beuthe M, Degrandsart F, Geerts J-F, Jourquin B (2002) External costs of the Belgian interurban freight traffic: a network analysis of their internalisation. Transp Res Part D Transp Environ 7:285–301CrossRefGoogle Scholar
  7. Bickel P, Schmid SA (2002a) Marginal cost case study 9D: urban road and rail case studies Germany (draft), ITS, University of Leeds, LeedsGoogle Scholar
  8. Bickel P, Schmid SA (2002b) Marginal cost case study 9E: inter-urban road and rail case studies Germany (draft), ITS, University of Leeds, LeedsGoogle Scholar
  9. Brand G, Scheidegger A, Schwank O, Braunschweig A (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit—Ökofaktoren 1997. SRU 297. Swiss Agency for Environment, Forest and Landscape (SAEFL), BernGoogle Scholar
  10. Brons M, Nijkamp P, Pels E, Rietveld P (2003) Railroad noise: economic valuation and policy. Transp Res Part D Transp Environ 8:169–184CrossRefGoogle Scholar
  11. Clark C, Martin R, van Kempen E, Alfred T, Head J, Davies HW, Haines MM, Barrio IL, Matheson M, Stansfeld SA (2006) Exposure–effect relations between aircraft and road traffic noise exposure at school and reading comprehension—the RANCH project. Am J Epidemiol 163:27–37CrossRefGoogle Scholar
  12. Doka G (2003) Ergänzung der Gewichtungsmethode für Ökobilanzen Umweltbelastungspunkte' 97 zu Mobilitäts-UBP' 97. Doka Ökobilanzen, ZurichGoogle Scholar
  13. Frischknecht R, Bollens U, Bosshart S, Ciot M, Ciseri L, Doka G, Dones R, Gantner U, Hischier R, Martin A (1996) Ökoinventare von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz, 3rd edn. Gruppe Energie-Stoffe-Umwelt (ESU), Eidgenössische Technische Hochschule Zürich und Sektion Ganzheitliche Systemanalysen, Paul Scherrer Institut, Villigen, Bundesamt für Energie (Hrsg.), BernGoogle Scholar
  14. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Humbert S, Margni M, Nemecek T, Spielmann M (2004) Implementation of life cycle impact assessment methods. Final report ecoinvent 2000 No. 3. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  15. Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10:3–9CrossRefGoogle Scholar
  16. Goedkoop M, Spriensma R (2000) The Eco-indicator 99, a damage oriented method for life cycle impact assessment. Methodology report, Pré Consultants B.V., AmersfoortGoogle Scholar
  17. Griefahn B, Marks A, Robens S (2006) Noise emitted from road, rail and air traffic and their effects on sleep. J Sound Vib 295:129–140CrossRefGoogle Scholar
  18. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleesewijk A, Suh S, Udo de Haes HA, de Brujin H, van Duin R, Huijbregts MAJ, Lindeijer EW, Roorda AAH, van der Ven BL, Weidema BP (2001) Life cycle assessment: an operational guide to the ISO standards. Final report, May 2001. Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit, Den HaagGoogle Scholar
  19. Habersatter K, Fecker I (1996) Ökoinventare für Verpackungen. Band 2, Schriftenreihe Umwelt SRU 250/I (Abfälle). Bundesamt für Umwelt Wald und Landschaft (BUWAL), BernGoogle Scholar
  20. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992) Environmental Life cycle assessment of products. Guide and background. Centre for Milieukunde (CML), LeidenGoogle Scholar
  21. Heutschi K (2004a) SonRoad: New Swiss road traffic noise model. Acta Acustica united with Acustica 90:548–554Google Scholar
  22. Heutschi K (2004b) SonRoad-Berechnungsmodell für Strassenlärm. Environmental series no. 366. Swiss Agency for Environment, Forest and Landscape (SAEFL), BernGoogle Scholar
  23. Hofstetter P, Müller-Wenk R (2005) Monetization of health damages from road noise with implications for monetizing health impacts in life cycle assessment. J Cleaner Prod 13:1235CrossRefGoogle Scholar
  24. Hyder AA, Ghaffar AA, Sugerman DE, Masood TI, Ali L (2006) Health and road transport in Pakistan. Public Health 120:132–141CrossRefGoogle Scholar
  25. ISO 14′040 (2006) Environmental management—life cycle assessment—principles and framework. ISO/TC 207/SC5. ISO, BrusselsGoogle Scholar
  26. ISO 14′044 (2006) Environmental management—life cycle assessment—requirements and guidelines. ISO/TC 207/SC5. ISO, BrusselsGoogle Scholar
  27. Jaeger JAG, Bowman J, Brennan J, Fahrig L, Bert D, Bouchard J, Charbonneau N, Frank K, Gruber B, von Toschanowitz KT (2005) Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecol Model 185:329–348CrossRefGoogle Scholar
  28. Jørgensen A-M, Ywema PE, Frees N, Exner S, Bracke R (1996) Transportation in LCA: a comparative evaluation of the importance of transport in four LCAs. Int J Life Cycle Assess 1:218–220CrossRefGoogle Scholar
  29. Lafleche V, Sacchetto F (1997) Noise assessment in LCA—a methodology attempt: a case study with various means of transport on a set trip. Int J Life Cycle Assess 2:111–115CrossRefGoogle Scholar
  30. Lam K-C, Chan P-K, Chan T-C, Au W-H, Hui W-C (2008) Annoyance response to mixed transportation noise in Hong Kong. Appl Acoust 70:1–10CrossRefGoogle Scholar
  31. Lengagne T (2008) Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biol Conserv 141:2023–2031CrossRefGoogle Scholar
  32. Lu C, Morrell P (2006) Determination and applications of environmental costs at different sized airports—aircraft noise and engine emissions. Transportation 33:45–61CrossRefGoogle Scholar
  33. Martuzzi M, Mudu P (2006) Assessing the health impact of air pollution, noise, and accidents as a function of transport policies. Epidemiology 17:S59–S60CrossRefGoogle Scholar
  34. Meijer A, Huijbregts M, Hertwich EG, Reijnders L (2006) Including human health damages due to road traffic in life cycle assessment of dwellings. Int J Life Cycle Assess 11:64–71CrossRefGoogle Scholar
  35. Miedema HME (2004) Relationship between exposure to multiple noise sources and noise annoyance. J Acoust Soc Am 116:949–957CrossRefGoogle Scholar
  36. Mudu P, Matuzzi M, Racioppi F, Berry B, Staatsen BF (2003) Hearts: health impacts of transport, integrating noise in a broader risk assessment tool. Epidemiology 14:S114CrossRefGoogle Scholar
  37. Müller-Wenk R (2002) Attribution to road traffic of the impact of noise on health. Environmental series no. 339. Swiss Agency for Environment, Forest and Landscape (SAEFL), BernGoogle Scholar
  38. Müller-Wenk R (2004) A method to include in LCA road traffic noise and its health effects. Int J Life Cycle Assess 9:76–85CrossRefGoogle Scholar
  39. Müller-Wenk R, Hofstetter P (2003) Monetisation of the health impact due to traffic noise. Environmental series no. 166. Swiss Agency for Environment, Forest and Landscape (SAEFL), BernGoogle Scholar
  40. Nielsen PH, Laursen JE (2005) Integration of external noise nuisance from road and rail transportation in lifecycle assessment. Danish Environmental Protection Agency, CopenhagenGoogle Scholar
  41. Nordic Council of Ministers (1996) Road traffic noise—Nordic prediction method. TemaNord. Nordic Council of Ministers, CopenhagenGoogle Scholar
  42. OCDE (1997) Les incidences sur l’environnement du transport de marchandises. Organisation de Cooperation et de Development Economiques, ParisGoogle Scholar
  43. Ohrstrom E, Skanberg A (2004a) Sleep disturbances from road traffic and ventilation noise—laboratory and field experiments. J Sound Vib 271:279–296CrossRefGoogle Scholar
  44. Ohrstrom E, Skanberg A (2004b) Longitudinal surveys on effects of road traffic noise: substudy on sleep assessed by wrist actigraphs and sleep logs. J Sound Vib 272:1097–1109CrossRefGoogle Scholar
  45. Öhrström E, Skånberg A, Svensson H, Gidlöf-Gunnarsson A (2006) Effects of road traffic noise and the benefit of access to quietness. J Sound Vib 295:40–59CrossRefGoogle Scholar
  46. Oliva C (1998) Belastungen der Bevölkerung durch Flug- und Strassenlärm. Duncker and Humblot, BerlinGoogle Scholar
  47. Peris SJ, Pescador M (2004) Effects of traffic noise on paserine populations in Mediterranean wooded pastures. Appl Acoust 65:357–366CrossRefGoogle Scholar
  48. Persson Waye K (2004) Effects of low frequency noise on sleep. Noise Health 6:87–91Google Scholar
  49. Potting J, Hauschild M (eds) (2003) Danish LCA guide (final draft). Danish Environmental Protection AgencyGoogle Scholar
  50. Raschke F (2004) Arousals and aircraft noise—environmental disorders of sleep and health in terms of sleep medicine. Noise Health 6:15–26Google Scholar
  51. SAEFL (1991) Strassenlärmmodell für überbaute Gebiete. Swiss Agency for Environment, Forest and Landscape (SAEFL), BernGoogle Scholar
  52. Sandrock S, Griefahn B, Kaczmarek T, Hafke H, Preis A, Gjestland T (2008) Experimental studies on annoyance caused by noises from trams and buses. J Sound Vib 313:908–919CrossRefGoogle Scholar
  53. Schmid SA, Preiss P, Gressmann A, Friedrich R (2003) Ermittlung Externer Kosten des Flugverkehrs am Flughafen Frankfurt/Main. Rdffin vom 07.11.2003. Universtität Stuttgart, Institut für Energiewirtschaft und rationelle Energieanwendung (IER), Abt. Technikfolgenabschätzung und Umwelt (TFU), StuttgartGoogle Scholar
  54. Schreyer C, Schneider C, Maibach M, Rothengatter W, Doll C, Schmedding D (2004) External cost of traffic—update study. INFRAS, ZürichGoogle Scholar
  55. Schuemer R, Schreckenberger D, Felscher-Suhr U (2003) Wirkung von Schienen- und Strassenverkehrslärm. ZEUS GmbH, BochumGoogle Scholar
  56. Skånberg A, Öhrström E (2006) Sleep disturbances from road traffic noise: a comparison between laboratory and field settings. J Sound Vib 290:3–16CrossRefGoogle Scholar
  57. Sommer H, Lieb C, Höin R, Schierz C (2004) Externe Lärmkosten des Strassen- und Schienenverkehrs der Schweiz. ARE/BAG/BUWAL, BernGoogle Scholar
  58. Spielmann M, Scholz RW (2005) Life cycle inventories of transport services: background data for freight transport. Int J Life Cycle Assess 10:85–94CrossRefGoogle Scholar
  59. Spreng M (2004) Noise induced nocturnal cortisol secretion and tolerable overhead flights. Noise Health 6:35–47Google Scholar
  60. Stassen KR, Collier P, Torfs R (2008) Environmental burden of disease due to transportation noise in Flanders (Belgium). Transp Res Part D Transp Environ 13:355–358CrossRefGoogle Scholar
  61. Steven H (2005) Ermittlung der Geräuschemission von Kfz im Straßenverkehr. TÜV Nord, WürselenGoogle Scholar
  62. Wirth K (2004) Lärmstudie 2000: Die Belästigungssituation im Umfeld des Flughafens Zürich. Ph.D. thesis, Universität Zürich, ZürichGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hans-Jörg Althaus
    • 1
    • 2
  • Peter de Haan
    • 2
  • Roland W. Scholz
    • 2
  1. 1.Technology and Society LaboratorySwiss Federal Laboratories for Materials Testing and Research (Empa)DuebendorfSwitzerland
  2. 2.Natural and Social Science Interface, Institute for Environmental DecisionsETH ZurichZurichSwitzerland

Personalised recommendations