USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment

  • Ralph K. Rosenbaum
  • Till M. Bachmann
  • Lois Swirsky Gold
  • Mark A. J. Huijbregts
  • Olivier Jolliet
  • Ronnie Juraske
  • Annette Koehler
  • Henrik F. Larsen
  • Matthew MacLeod
  • Manuele Margni
  • Thomas E. McKone
  • Jérôme Payet
  • Marta Schuhmacher
  • Dik van de Meent
  • Michael Z. Hauschild
LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS • METHODOLOGY

Abstract

Background, aim and scope

In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice.

Materials and methods

A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models.

Results

Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box.

Discussion

The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement.

Conclusions

USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment.

Recommendations and perspectives

We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.

Keywords

Characterisation factors Characterisation modelling Comparative impact assessment Comparison Consensus model Freshwater ecotoxicity Harmonisation Human exposure Human toxicity LCIA Life cycle impact assessment Toxic impact 

Supplementary material

11367_2008_38_MOESM1_ESM.doc (996 kb)
ESM 1(DOC 996 KB)
11367_2008_38_MOESM2_ESM.xls (6 mb)
ESM 2(XLS 5.99 MB)

References

  1. Aronson D, Boethling R, Howard P, Stiteler, W (2006) Estimating biodegradation half-lives for use in chemical screening. Chemosphere 63(11):1953–1960CrossRefGoogle Scholar
  2. Bachmann TM (2006) Hazardous substances and human health: exposure, impact and external cost assessment at the European scale. Trace metals and other contaminants in the environment, 8. Elsevier, Amsterdam, p 570Google Scholar
  3. Bennett DH, Scheringer M, McKone TE, Hungerbühler K (2001) Predicting long-range transport: a systematic evaluation of two multimedia transport models. Environ Sci Technol 35(6):1181CrossRefGoogle Scholar
  4. Cowan CE, Mackay D, Feijtel TCJ, van de Meent D, Di Guardo A, Davies J, Mackay N (eds) (1994) The multi-media fate model: a vital tool for predicting the fate of chemicals. SETAC. SETAC Press, Denver, COGoogle Scholar
  5. Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-Indicator 99: does it matter which one you choose? Int J Life Cycle Assess 8(4):191–200CrossRefGoogle Scholar
  6. EC (1999) Externalities of fuel cycles—ExternE Project. Vol. 7—methodology, 2nd edn. European Commission DG XII, Science Research and Development, JOULE, Brussels, LuxembourgGoogle Scholar
  7. EC (2003) Technical guidance document on risk assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances. Commission Regulation (EC) no. 1488/94 on risk assessment for existing substances. Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market—part I, Institute for Health and Consumer Protection, European Chemicals Bureau, European Joint Research Centre (JRC) Ispra, ItalyGoogle Scholar
  8. EC (2005) ExternE—externalities of energy: Methodology 2005 update. Office for Official Publication of the European Communities, LuxembourgGoogle Scholar
  9. ECOTOX (2001) ECOTOXicology Database system. http://www.epa.gov/ecotox
  10. Fenner K, Scheringer M, Stroebe M, Macleod M, McKone T, Matthies M, Klasmeier J, Beyer A, Bonnell M, Le Gall AC, Mackay D, Van De Meent D, Pennington D, Scharenberg B, Suzuki N, Wania F (2005) Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol 39(7):1932CrossRefGoogle Scholar
  11. Goedkoop M, Müller-Wenk R, Hofstetter P, Spriensma R (1998) The Eco-Indicator 99 explained. Int J Life Cycle Assess 3(6):352–360CrossRefGoogle Scholar
  12. Gold LS, Slone TH, Bernstein L (1989) Summary of carcinogenic potency and positivity for 492 rodent carcinogens in the carcinogenic potency database. Environ Health Perspect 79:259–272CrossRefGoogle Scholar
  13. Gold LS, Manley NB, Slone TH, Rohrbach L, Backman-Garfinkel G (2005) Supplement to the carcinogenic potency database (CPDB) Results of animal bioassays published in the general literature through 1997 and by the National Toxicology Program in 1997–1998. Toxicol Sci 85(2):747–808CrossRefGoogle Scholar
  14. Gold LS et al (2008) The carcinogenic potency database (CPDB). http://potency.berkeley.edu/chemicalsummary.html
  15. Hauschild M, Wenzel H (1998) Environmental assessment of products, vol 2: scientific background. Kluwer, Hingham, MA, USA, p 565Google Scholar
  16. Hauschild MZ, Huijbregts MAJ, Jolliet O, MacLeod M, Margni M, van de Meent D, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037CrossRefGoogle Scholar
  17. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegner Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, Goede AP (1992) Environmental life cycle assessment of products. Centre of Environmental Sciences, Leiden, The NetherlandsGoogle Scholar
  18. Hertwich E, Matales SF, Pease WS, McKone TE (2001) Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 20(4):928–939CrossRefGoogle Scholar
  19. Howard PH, Meylan WM (eds) (1997) Handbook of physical properties of organic chemicals. Lewis Publishers (CRC Press cop), Michigan, 1585 ppGoogle Scholar
  20. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates. Lewis Publishers, MichiganGoogle Scholar
  21. Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(4):541–573CrossRefGoogle Scholar
  22. Huijbregts MAJ, Geelen LMJ, Van De Meent D, Hertwich EG, McKone TE (2005a) A comparison between the multimedia fate and exposure models CalTOX and uniform system for evaluation of substances adapted for life-cycle assessment based on the population intake fraction of toxic pollutants. Environ Toxicol Chem 24(2):486–493CrossRefGoogle Scholar
  23. Huijbregts MAJ, Rombouts LJA, Ragas AMJ, Van de Meent D (2005b) Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manage 1(3):181–192CrossRefGoogle Scholar
  24. Huijbregts MAJ, Struijs J, Goedkoop M, Heijungs R, Hendriks AJ, Van de Meent D (2005c) Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere 61(10):1495–1504CrossRefGoogle Scholar
  25. IUCLID (2000) IUCLID CD-ROM Year 2000 edition. Public data on high volume chemicalsGoogle Scholar
  26. Jolliet O, Hauschild M (2005) The influence of the intermittent character of rain on fate and long range transport of air organic pollutants. Environ Sci Technol 39(12):4513–4522CrossRefGoogle Scholar
  27. Jolliet O, Brent A, Goedkoop M, Itsubo N, Mueller-Wenk R, Peña C, Schenk R, Stewart M, Weidema B (2003a) The LCIA Framework. SETAC–UNEP Life Cycle Initiative, LausanneGoogle Scholar
  28. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum RK (2003b) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330CrossRefGoogle Scholar
  29. Jolliet O, Rosenbaum RK, Chapmann P, McKone T, Margni M, Scheringer M, van Straalen N, Wania F (2006) Establishing a framework for life cycle toxicity assessment: findings of the Lausanne review workshop. Int J Life Cycle Assess 11(3):209–212CrossRefGoogle Scholar
  30. Kawamoto K, MacLeod M, Mackay D (2001) Evaluation and comparison of multimedia mass balance models of chemical fate: Application of EUSES and ChemCAN to 68 chemicals in Japan. Chemosphere 44(4):599–612CrossRefGoogle Scholar
  31. Larsen HF, Hauschild MZ (2007) GM-troph: a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12(2):79–91CrossRefGoogle Scholar
  32. Ligthart T et al (2004) Declaration of Apeldoorn on LCIA of Non-Ferrous Metals. http://lcinitiative.unep.fr/includes/file.asp?site=lcinit&file=38D1F49D-6D64-45AE-9F64-578BA414E499
  33. Mackay D, Seth R (1999) The role of mass balance modelling in impact assessment and pollution prevention. In: Sikdar SK, Diweakar U (eds) Tools and methods for pollution prevention. Kluwer, The Netherlands, pp 157–179Google Scholar
  34. Mackay D, Shiu WY, Lee SC, Ma KC (2006) Handbook of physical–chemical properties and environmental fate for organic chemicals. Science, Technology, Engineering, I–IV. CRC, Boca RatonGoogle Scholar
  35. MacLeod M, Woodfine DG, Mackay D, McKone TE, Bennett DH, Maddalena R (2001) BETR North America: a regionally segmented multimedia contaminant fate model for North America. Environ Sci Pollut Res 8(3):156–163CrossRefGoogle Scholar
  36. Maddalena RL, McKone TE, Layton DW, Hsieh DPH (1995) Comparison of multi-media transport and transformation models: regional fugacity model vs. CalTOX. Chemosphere 30(5):869–899CrossRefGoogle Scholar
  37. Margni M (2003) Source to intake modeling in life cycle impact assessment. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 138 ppGoogle Scholar
  38. Margni M, Pennington DW, Birkved M, Larsen HF, Hauschild M (2002) Test set of organic chemicals for LCIA characterisation method comparison. OMNITOX project reportGoogle Scholar
  39. Margni M, Pennington DW, Bennett DH, Jolliet O (2004) Cyclic exchanges and level of coupling between environmental media: intermedia feedback in multimedia fate models. Environ Sci Technol 38(20):5450–5457CrossRefGoogle Scholar
  40. McKone TE (1993) The precision of QSAR methods for estimating intermedia transfer factors in exposure assessments. SAR QSAR Environ Res 1(1):41–51CrossRefGoogle Scholar
  41. McKone TE (2001) Ecological toxicity potentials (ETPs) for substances released to air and surface waters. Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA 94720Google Scholar
  42. McKone T, Bennett D, Maddalena R (2001) CalTOX 4.0 Technical support document, vol 1. LBNL-47254, Lawrence Berkeley National Laboratory, Berkeley, CAGoogle Scholar
  43. McKone TE, Kyle AD, Jolliet O, Olsen SI, Hauschild M (2006) Dose–response modeling for life cycle impact assessment—findings of the Portland Review Workshop. Int J Life Cycle Assess 11(2):137–140CrossRefGoogle Scholar
  44. Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouchie S (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18(4):664–672CrossRefGoogle Scholar
  45. NCMS (2008) SOLV-DB. http://solvdb.ncms.org/index.html
  46. Pant R, Van Hoof G, Schowanek D, Feijtel TCJ, De Koning A, Hauschild M, Olsen SI, Pennington DW, Rosenbaum RK (2004) Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment: insights from a detergent case study within OMNIITOX. Int J Life Cycle Assess 9(5):295–306CrossRefGoogle Scholar
  47. Payet J (2004) Assessing toxic impacts on aquatic ecosystems in life cycle assessment (LCA). PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 190 ppGoogle Scholar
  48. Pennington DW, Margni M, Ammann C, Jolliet O (2005) Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. Environ Sci Technol 39(4):1119–1128CrossRefGoogle Scholar
  49. Rosenbaum RK (2006) Multimedia and food chain modelling of toxics for comparative risk and life cycle impact assessment. PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 192 ppGoogle Scholar
  50. Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634CrossRefGoogle Scholar
  51. Scheringer M, Wegmann F, Hungerbühler K (2004) Investigating the mechanics of multimedia box models: how to explain differences between models in terms of mass fluxes? Environ Toxicol Chem 23(10):2433–2440CrossRefGoogle Scholar
  52. Sinkkonen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40(9):943–949CrossRefGoogle Scholar
  53. SRC (2008) Environmental Fate Data Base (EFDB). http://www.syrres.com/esc/efdb.htm
  54. Stroebe M, Scheringer M, Hungerbühler K, Held H (2004) Inter-comparison of multimedia modeling approaches: modes of transport, measures of long range transport potential and the spatial remote state. Sci Total Environ 321(1–3):1–20Google Scholar
  55. Travis C, Arms A (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ Sci Technol 22(3):271–274CrossRefGoogle Scholar
  56. USEPA (2007) Estimation Programs Interface EPI Suite. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
  57. Van Zelm R, Huijbregts MAJ, Harbers JV, Wintersen A, Struijs J, Posthuma L, Van de Meent D (2007) Uncertainty in msPAF-based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integr Environ Assess Manage 3(2):203–210CrossRefGoogle Scholar
  58. Vermeire T, Pieters M, Rennen M, Bos P (2001) Probabalistic assessment factors for human health risk assessment—a practical guide. National Institute for Health and the Environment, Bilthoven, The NetherlandsGoogle Scholar
  59. Wania F, Dugani CB (2003) Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environ Toxicol Chem 22(6):1252–1261CrossRefGoogle Scholar
  60. Wania F, MacKay D (2000) A comparison of overall persistence values and atmospheric travel distances calculated by various multi-media fate models. WECC Wania Environmental Chemists Corp., under Chlorine Chemistry Council Contracts No. 9461 and 9462, Toronto, Ontario, CanadaGoogle Scholar
  61. Wegmann F, Cavin L, MacLeod M, Scheringer M, Hungerbühler K (2008) A software tool for screening chemicals of environmental concern for persistence and long-range transport potential. Environ Model Softw 24(2):228–237 http://dx.doi.org/10.1016/j.envsoft.2008.06.014
  62. Wenzel H, Hauschild M, Alting L (1998) Environmental assessment of products, vol 1: methodology, tools and case studies in product development. Kluwer, Hingham, MA, USA, p 560Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ralph K. Rosenbaum
    • 1
  • Till M. Bachmann
    • 2
  • Lois Swirsky Gold
    • 3
  • Mark A. J. Huijbregts
    • 4
  • Olivier Jolliet
    • 5
  • Ronnie Juraske
    • 6
    • 7
  • Annette Koehler
    • 7
  • Henrik F. Larsen
    • 8
  • Matthew MacLeod
    • 9
  • Manuele Margni
    • 1
  • Thomas E. McKone
    • 10
  • Jérôme Payet
    • 11
  • Marta Schuhmacher
    • 6
  • Dik van de Meent
    • 4
    • 12
  • Michael Z. Hauschild
    • 8
  1. 1.Department of Chemical Engineering, CIRAIGÉcole Polytechnique de MontréalMontréalCanada
  2. 2.European Institute for Energy Research (EIFER)University of KarlsruheKarlsruheGermany
  3. 3.University of California Berkeley, and Children’s Hospital Oakland Research Institute (CHORI)OaklandUSA
  4. 4.Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Center for Risk Science and CommunicationUniversity of MichiganAnn ArborUSA
  6. 6.Chemical Engineering SchoolRovira i Virgili UniversityTarragonaSpain
  7. 7.Institute of Environmental EngineeringEcological Systems Design, ETH ZurichZurichSwitzerland
  8. 8.DTU Management EngineeringTechnical University of DenmarkLyngbyDenmark
  9. 9.Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
  10. 10.Lawrence Berkeley National LaboratoryUniversity of California BerkeleyBerkeleyUSA
  11. 11.Institute of Environmental Science and TechnologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  12. 12.National Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations