Skip to main content
Log in

New directions for studying the role of free radicals in aging

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Oxidative damage caused by free radicals in vivo is believed to play an important role in the etiology of aging and age-associated degenerative diseases. The most direct evidence supporting this theory is the recent finding that the transgenic Drosophila that overexpress the antioxidant enzymes catalase and superoxide dismutase exhibit an increase in life span. Although the increase in life span in Drosophila by these enzymes is certainly important, the next logical direction is to demonstrate whether increased antioxidant protection occurs similarly in mammals. Several transgenic mouse models that overexpress antioxidant enzymes are currently available. However, one major shortcoming in using these transgenic mice is the difficulty of producing antioxidant overexpression in more than a few tissues. Despite the potential shortcomings of using transgenic mice, these animals provide a unique system in which individual components of a complex system, such as the antioxidant defense system, can be modulated and examined independently. Transgenic mice are therefore potentially powerful tools to study the role of various components of the antioxidant system in the aging process.

A parallel direction in the study of free radical roles in aging is to investigate the modulation of transcription factors by oxidative stress. Among these, the transcription factors, NF-κB and AP-1 are implicated in oxidative stress. The activities of these oxidative stress-response transcription factors are regulated by upstream signaling molecules, which involve a cascade of phosphorylation and dephosphorylation events leading to their activation. In this article, we review recent studies that use molecular approaches to investigate the biological role of oxidant stress. Each of these studies potentially provide new insights into the roles of free radicals and free radical damage in the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harman, D., Aging: A theory based on free radical and radiation chemistry. J. Gerontol., 11: 298–300, 1956.

    CAS  PubMed  Google Scholar 

  2. Sohal, R.S.: The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res., 5: 3–17, 1993.

    CAS  Google Scholar 

  3. Nohl, H.: Involvement of free radicals in aging: a consequence or cause of senescence. Brit. Med. Bull., 40: 653–667, 1993.

    Google Scholar 

  4. Harman, D.: Free radical theory of aging: the free radical diseases. Age, 7: 111–131, 1984.

    Article  CAS  Google Scholar 

  5. McCord, J.M., and Fridovich, I.: Superoxide dismutase: An enzymic function for erythrocuprein (neurocuprein). J. Biol., Chem., 244: 6049–6055, 1969.

    CAS  Google Scholar 

  6. Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 62: 527–605, 1979.

    Google Scholar 

  7. Maiorino, M., Chu, F.F., Ursini, F., Davies, K., Dorshaw, J.H., and Esworthy, R.S.: Phospholipid hydroperoxide glutathione peroxidase is the 18 kDa selenoprotein expressed in human tumor cell lines. J. Biol. Chem., 255: 7728–7732, 1991.

    Google Scholar 

  8. Elroy-Stein, O., Bernstein, Y., and Groner, Y.: Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J., 5: 615–622, 1986.

    CAS  PubMed  Google Scholar 

  9. Huang, T.T., Carlson, E.J., Leadon, S.A., and Epstein, C.J.: Relationship of resistance to oxygen free radicals to CuZn-superoxide dismutase activity in transgenic, transfected, and trisomic ceils. FASEB J., 6: 03-910, 1992.

    Google Scholar 

  10. Krall, J., Bagley, A.C., Mullenbach, G.T., Hallewell, R.A., and Lynch, R.E.: Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J. Biol. Chem., 263: 1910–1914, 1988.

    CAS  PubMed  Google Scholar 

  11. Kelner, M.J., Bagnell, R., Montoya, M., Estes, L., Uglik, S.F., and Cerutti P.: Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Rad. Biol. Med., 18: 497–506, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Negita, M., Hayashi, S., Yokoyama, I., Emi, N., Nagasaka, T., and Takagi, H.: Human superoxide dismutase cDNA transfection and its in vitro effect on cold preservation. Biophys. Res. Biochem. Comm., 218: 653–657, 1996.

    Article  CAS  Google Scholar 

  13. Elroy-Stein, O., and Groner, Y.: Impaired neurotransmitter uptake in PC-12 cells overexpressing human CuZn-superoxide dismutase-implication for gene dosage effects in Down Syndrome. Cell, 52: 259–267, 1988.

    Article  CAS  PubMed  Google Scholar 

  14. Norris, K.H., and Hornsby, P.J.: Cytotoxic effects of expression of human superoxide dismutase in bovine adrenocortical cells. Mutat. Res., 237: 95–106, 1990.

    CAS  PubMed  Google Scholar 

  15. Amstad, P., Peskin, A., Shah, G., Mirault, M.-E., Moret, R., Zbinden, I., and Cerutti, P.: The balance between Cu/Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry, 30: 9305–9313, 1991.

    Article  CAS  PubMed  Google Scholar 

  16. Erzurum, S.C., Lemarchand, P., Rosenfeld, MA., Yoo, J.-H., Crystal, R.G.: Protection of human endothelial cells from oxidant injury by adenovirus-mediated transfer of the human catalase cDNA. Nucleic Acids Res., 21: 1607–1612, 1993.

    CAS  PubMed  Google Scholar 

  17. Lindau-Shepard, B.A., and Shaffer, J.B.: Expression of human catalase in acatalasemic murine SV-B2 cells confers protection from oxidative damage. Free Rad. Biol. Med., 15: 581–588, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Wong, G.H.W., Elwell, J.H., Oberley, L.W., and Goeddel, D.V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell, 58: 923–931, 1989.

    Article  CAS  PubMed  Google Scholar 

  19. Hirose, K., Longo, D.L., Oppenheim, J.J., and Matsushima, K.: Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J., 7: 361–368, 1993.

    CAS  PubMed  Google Scholar 

  20. Suresh, A., Tung, F., Moreb, J., and Zucali, J.R.: Role of manganese superoxide dismutase in radio-protection using gene transfer studies. Cancer Gene Therapy 1: 85–90, 1994.

    CAS  PubMed  Google Scholar 

  21. StClair, D.K., Oberley, T.D., and Ho, Y.-S.: Overproduction of human Mn-superoxide dismutase modulates paraquat-mediated toxicity in mammalian cells. FEBS Lett., 293: 199–203, 1991.

    Article  CAS  Google Scholar 

  22. Warner, B., Papes, R., Heile, M., Spitz, D., and Wispe, J.: Expression of human Mn SOD in Chinese hamster ovary cells confers protection from oxidant injury. Am. J. Physiol., 264: L598–L605, 1993.

    CAS  PubMed  Google Scholar 

  23. Lindau-Shepard, B., Shaffer, J.B, and Del Vecchio, P.J.: Overexpression of manganous superoxide dismutase (MnSOD) in pulmonary endothelial cells confers resistance to hyperoxia. J. Cell. Physiol., 161: 237–242, 1994.

    Article  CAS  PubMed  Google Scholar 

  24. St. Clair, D.K., Wan, X.S., Oberley, T.D., Muse, K.E., and St. Clair, W.H.: Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol. Carcinog., 6: 238–242, 1992.

    CAS  PubMed  Google Scholar 

  25. St. Clair, D.K., Oberley, T.D., Muse, K.E., and St. Clair, W.H.: Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic. Biol. Med., 16: 275–282, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Church, S.L., Grant, J.W., Ridnour, L.A., Oberley, L.W., Swanson, P.E., Meltzer, P.S., and Trent, J.M.: Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. USA, 90: 3113–3117, 1993.

    CAS  PubMed  Google Scholar 

  27. Li, J.J., Oberley, L.W., St. Clair, D.K., Ridnour, L.A., and Oberley, T.D.: Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene, 10: 1989–2000, 1995.

    CAS  PubMed  Google Scholar 

  28. Mirault, M.E., Tremblay, A., Beaudoin, N., and Tremblay, M.: Overexpression of seleno-gluthathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem., 266: 20752–20760, 1991.

    Google Scholar 

  29. Taylor, S.D., Davenport, L.D., Speranza, M.J., Mullenbach, G.T., and Lynch, R.E.: Glutathione peroxidase protects cultured mammalian cells from the toxicity of adriamycin and paraquat. Arch. Biochem. Biophys., 305: 600–605, 1993.

    Article  CAS  PubMed  Google Scholar 

  30. Seto, N.O., Hayashi, S., and Tener, G.M.: Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl. Acad. Sci. USA, 87: 4270–4274, 1990.

    CAS  PubMed  Google Scholar 

  31. Orr, W.C., and Sohal, R.S.: Effects of Cu-Zn super-oxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys., 301: 4–40, 1993.

    Article  Google Scholar 

  32. Reveillaud, I., Niedzwiecki, A., Bensch, K.G., and Fleming, J.E.: Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol. Biol. Cell, 11: 632–640, 1991.

    CAS  Google Scholar 

  33. Durusoy, M., Diril, N., and Bozcuk, A.: Age-related activity of catalase in different genotypes of Drosophila melanogaster. Exp. Gerontol., 30: 77–86, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Epstein, C.J., Avraham, K.B., Lovett, M., Smith, S., Elroy-Stein, O., Rotman, G., Bry, C., and Groner, Y.: Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in down syndrome. Proc. Natl. Acad. Sci. USA, 84: 8044–8048, 1987.

    CAS  PubMed  Google Scholar 

  35. Przedborski, S., Jackson-Lewis, V., Kostic, V., Carlson, E., Epstein, C.J., and Cadet, J.L.: Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc-superoxide dismutase transgenic mice. J. Neurochem., 58: 1760–1767, 1992.

    CAS  PubMed  Google Scholar 

  36. White, C.W., Avraham, K.B., Shanley, P.F., and Groner, Y.: Transgenic mice with expression of elevated levels of copper-zinc superoxide dismutase in the lungs are resistant to pulmonary oxygen toxicity. J. Clin. Invest., 87: 2162–2168, 1991.

    Article  CAS  PubMed  Google Scholar 

  37. Kinouchi, H., Epstein, C.J., Mizui, T., Carlson, E., Chen, S.F., and Chan, P.H.: Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 88: 11158–11162, 1991.

    Google Scholar 

  38. Chan, P.H., Yang, G.Y., Chen, S.F., Carlson, E., and Epstein, C.J.: Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann. Neurol., 29: 482–486, 1991.

    Article  CAS  PubMed  Google Scholar 

  39. Chart, P.H., Chu, L., Chen, S.F., Carlson, E.J., and Epstein, C.J.: Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke, 21: 80–82, 1990.

    Google Scholar 

  40. Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A.B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C.J., and Cadet, J.L.: Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyddine-induced neurotoxicity. J. Neurosci., 12: 1658–1667, 1992.

    CAS  PubMed  Google Scholar 

  41. Avraham, K.B., Schickler, M., Sapoznikov, D., Yarom, R., and Groner, Y.: Down’s syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase. Cell, 54: 823–829, 1988.

    Article  CAS  PubMed  Google Scholar 

  42. Avraham, K.B., Sugarman, H., Rotshenker, S., and Groner, Y.: Down’s syndrome: morphological remodeling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J. Neurocytol., 20: 206–215, 1991.

    Article  Google Scholar 

  43. Schickler, M., Knobler, H., Avraham, K.B., Elroy-Stein, O., and Groner, Y.: Diminished serotonin uptake in platelets of transgenic mice with increased Cu/Zn-superoxide dismutase activity. EMBO J., 8: 1385–1392, 1989.

    CAS  PubMed  Google Scholar 

  44. Minc-Golomb, D., Knobler, H., and Groner, Y.: Gene dosage of CuZnSOD and Down’s syndrome: diminished prostaglandin synthesis in human trisomy 21, transfected cells and transgenic mice. EMBO J., 10: 119–2124, 1991.

    Google Scholar 

  45. Nabarra, B., Casanova, M., Paris, D., Nicole, A., Toyama, K., Sinet, P., Ceballos, I., and London, J.: Transgenic mice overexpressing the human CuZnSOD gene: ultrastructural studies of a premature thymic involution model of Down’s Syndrome (Trisomy 21). Laboratory Investigation, 74: 617–626, 1996.

    CAS  PubMed  Google Scholar 

  46. Mirochnitchenko, O., and Inouye, M.: Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage functions. J. Immunol., 156: 1578–1586, 1996.

    CAS  PubMed  Google Scholar 

  47. Wispe, J.R., Warner, B.B., Clark, J.C., Dey, C.R., Neuman, J., Glasser, S.W., Crapo, J.D., Chang, L.Y., and Whitsett, J.A.: Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen toxicity. J. Biol. Chem., 267: 23937–23941, 1992.

    Google Scholar 

  48. Ho, Y.S.: Transgenic models for the study of lung biology and disease. Am. J. Physiol., 266: L319–L353, 1994.

    CAS  PubMed  Google Scholar 

  49. Mirault, M., Tremblay, A., Furling, D., Trepanier, G., Dugre, F., Puymirat, J., and Pothier, F.: Transgenic glutathione peroxidase mouse models for neuroprotection studies. Ann. N. Y. Acad. Sci., 738: 104–115, 1994.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y., Huang, T., Carlson, E., Yoshimura, M., Berger, C., Chan, P., Wallace, D., and Epstein, C.: Dilated cardiomopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet., 11: 376–381, 1995.

    Article  CAS  PubMed  Google Scholar 

  51. Lebovitz, R M., Zhang, H., Vogel, H., Cartwright, J., Dionne, L., Lu, N., Huang, S., and Matzuk, M.: Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA, 93: 9782–9787, 1996.

    Article  CAS  PubMed  Google Scholar 

  52. Meyer, M., Schreck, R., and Baeuerle, P.A.: H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J., 12: 2005–2015, 1993.

    CAS  PubMed  Google Scholar 

  53. Dalton, T., Palmer, R.D., and Andrews, G.K.: Transcriptional induction of the mouse metallothionein-1 gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acid Res., 22: 5016–5023, 1994.

    CAS  PubMed  Google Scholar 

  54. Hellmund, D.: Heat Shock: Response of Eucaryotic Cells. New York, Springer-Verlag, 1994.

    Google Scholar 

  55. Oh, S. H., Deagen, J.T., Whanger, P.D., and Werving, P.H.: Biological function of metallothionin V. Its induction in rats by various stresses. Am. J. Physiol., 234: E282–E305, 1978.

    CAS  PubMed  Google Scholar 

  56. Koj, A.: Acute Phase Reactants. In: Structure and Function of Plasma Proteins. A.C. Allison, (ed), New York, Plenum Publishing Corp., 1985, 73–125.

    Google Scholar 

  57. Baeuerle, P.A., and Baltimore, D.: IκB: A specific inhibitor of the NF-kappa B transcription factor. Science, 242: 540–546, 1988.

    CAS  PubMed  Google Scholar 

  58. Carter, K.C., Post, D.G., and Papaconstantinou, J.: Differential expression of the mouse alpha 1-acid glycoprotein genes during inflammation. Biochem. Biophys. Acta., 1089: 197–205, 1991.

    CAS  PubMed  Google Scholar 

  59. Liu, A., Lin, Y.C., Chio, H.S., Sarhage, F., and Li, B.: Attenuated induction of heat shock gene expression in aging fibroblast. J. Biol. Chem., 264: 12037–12045, 1989.

    Google Scholar 

  60. Post, D.J., Carter, K.C., and Papaconstantinou, J.: The effect of aging on constitutive mRNA levels and lipopolysaccharide inducibility of acute phase genes. N. Y. Acad. Sci., 621: 66–77, 1991.

    CAS  Google Scholar 

  61. Heydari, A. R., Wu, B., Takahashi, R., Strong, R., and Richardson, A.: Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell. Biol., 13: 2909–2918, 1993.

    CAS  PubMed  Google Scholar 

  62. Pahlavani, M. A., Denny, M., Moore, S. A., Weindruch, R., and Richardson, A.: The expression of heat shock protein 70 decreases with age in ymphocytes from rats and rhesus monkeys. Exp. Cell Res., 218: 310–318, 1995.

    Article  CAS  PubMed  Google Scholar 

  63. Storz, G., Tartaglia, L.A., Farr, S.B., and Ames, B.N.: Bacterial defenses against oxidative stress. Trends Genet., 6: 363–368, 1990.

    Article  CAS  PubMed  Google Scholar 

  64. Demple, B.: Regulation of bacterial oxidative stress genes. Annu. Rev. Genet., 25: 315–337, 1991.

    Article  CAS  PubMed  Google Scholar 

  65. Schreck, R., Meier, B., Mannel, D., Droge, W., and Baeuerle, P. A.: Dithiocarbamates as potent inhibitors of NF-κB activation in intact cells. J. Exp. Med., 175: 1181–1194, 1992.

    Article  CAS  PubMed  Google Scholar 

  66. Schreck, R., Rieber, P., and Baeuerle, P.A.: Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J., 10: 2247–2258, 1991.

    CAS  PubMed  Google Scholar 

  67. Baeuerle, P.A., and Baltimore, D.: The physiology of NF-kB transcription factor. In: Molecular aspects of cellular regulation, hormonal control regulation of gene transcripton. Cohen, P., and J.G. Foulkes (ed), Amsterdam, Elsevier Science Publishers B.V., 1991, 409–432.

    Google Scholar 

  68. Baeuerle, P.A.: The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochem. Biophys. Acta, 1072: 63–80, 1991.

    CAS  PubMed  Google Scholar 

  69. Baeuerle, P.A.: The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochem. Biophys. Acta, 1072: 63–80, 1991.

    CAS  PubMed  Google Scholar 

  70. Nose, K., Shibanuma, M., Kikuchi, K., Kageyama, H., Sakiyama, S., and Kuroki, T.: Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem., 201: 99–106, 1991.

    Article  CAS  PubMed  Google Scholar 

  71. Amstad, P.A., Krupitza, G., and Cerutti, P.A.: Mechanisms of c-fos induction by active oxygen. Cancer Res., 52: 3952–3960, 1992.

    CAS  PubMed  Google Scholar 

  72. Schreck, R., Albermann, K., and Baeuerle, P.A.: Nuclear factor κB: an oxidative stress-response transcription factor of eukaryotic cells. Free Rad. Res. Commun., 17: 221–237, 1992.

    CAS  Google Scholar 

  73. Stankova, J., and Pleszczynski, M.: Leukotriene B4 stimulates c-fos and c-jun transcription and AP-1 binding activity in human monocytes. Biochem. J., 282: 625–629, 1992.

    CAS  PubMed  Google Scholar 

  74. Datta, R., Hallahan, D.E., Kharbanda, S.M., Rubin, E., Sherman, M.L., Huberman, E., Weichselbaum, R.R., and Kufe, D.W.: Involvement of reactive oxygen intermediates in the indiction of c-fos gene transcription by ionizing radiation. Biochemistry, 31: 8300–8306, 1992.

    Article  CAS  PubMed  Google Scholar 

  75. Munoz, E., Zubiaga, A.M., Huang, C., and Huber, B.T.: IL-1 induces protein tyrosine phosphorylation in T cells. Eur. J. Immunol., 22: 1391–1396, 1992.

    CAS  PubMed  Google Scholar 

  76. Devary, Y., Gottlieb, R.A., Smeal, T., and Karin, M.: The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71: 1081–1092, 1992.

    Article  CAS  PubMed  Google Scholar 

  77. Tyrrell, R.M.: Oxidative stress. In: Oxidative stress, Oxidants and antioxidants, Sies, H. (ed.). London, Academic Press, 1991, 57–84.

    Google Scholar 

  78. Abate, C., Patel, L, Rauscher, F.J., and Curran, T.: Redox regulation of fos and jun DNA binding activity in vitro. Science, 249: 1157–1161, 1990.

    CAS  PubMed  Google Scholar 

  79. Frame, M.G., Wilkie, N.M., Darling, A.J., Chudleigh, A., Pintzas, A., Lang, J.C., and Gillespie, D.A.: Regulation of AP-1 DNA complex formation in vitro. Oncogene, 6: 205–209, 1991.

    CAS  PubMed  Google Scholar 

  80. Hunter, T. and Karin, M.: The regulation of transcription by phosphorylation. Cell, 70: 375–387, 1992.

    Article  CAS  PubMed  Google Scholar 

  81. Pelech, S.L. and Sanghera, J.S.: Mitogen-activated protein kinases: Versatile transducers for cell signaling. Trends in Biochem. Sci., 17: 233–238, 1992.

    CAS  Google Scholar 

  82. Papaconstantinou, J.: Unifying model of the programmed and stochastic theories of aging. Stress response genes, signal transduction-redox pathways and aging. Ann. New York Acad. Sci., 719: 195–211, 1994.

    CAS  Google Scholar 

  83. Herrlich, P., Ponta, H., and Rahmsdorf, H.J.: DNA damage inducing gene expression: Signal transduction and relation to growth factor signaling. Rev. Physiol. Biochem. Pharmacol., 119: 187–223, 1992.

    CAS  PubMed  Google Scholar 

  84. Woodgette, J.R.: Fos and Jun: Two into one will go. Seminar in Cancer Biology, 4: 389–397, 1990.

    Google Scholar 

  85. Angel, P. and Karin, M.: The role of Jun, Fos, and the AP-1 complex in cell proliferation and transformation. Biochem. Biophys. Acta., 1072: 129–157, 1991.

    CAS  PubMed  Google Scholar 

  86. Davis, R.J.: Transcriptional Regulation by MAP kinases. Mol. Reprod. Dev. 42: 459–567, 1995.

    Article  CAS  PubMed  Google Scholar 

  87. Conrad, A. C., and Steck, P.A.: Protein tyrosine in signal transduction. The Cancer Bulletin, 47: 125–133, 1995.

    Google Scholar 

  88. Bernstein, L.R., Ferris, D.K., Colburn, N.H., and Sobel, M.E.: A family of mitogen-activated protein kinase-related proteins interacts in vivo with activator protein-1 transcription factor. J. Biol. Chem., 269: 9401–411, 1994.

    CAS  PubMed  Google Scholar 

  89. Seger, R., and Krebs, E.C.: The MAPK signaling cascade. FASEB J., 9: 726–732, 1995.

    CAS  PubMed  Google Scholar 

  90. Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Neriah, Y.: JNK is involves in signal integration during costimulation of T lymphocytes. Cell, 77: 726–735, 1994.

    Article  Google Scholar 

  91. Kyriakis, J M., Banerjee, P., and Nikolakaki, E.: The stress-activated protein kinase subfamily of c-jun kinases. Nature, 369: 156–160, 1994.

    Article  CAS  PubMed  Google Scholar 

  92. D’erijard, B., Hibi, M., and Wu, I.H.: JNK1: A protein kinase stimulated by UV light and Ha-Ras taht binds and phosphorylates the c-jun activation domain. Cell, 76: 1025–1037, 1994.

    Article  CAS  Google Scholar 

  93. Sanchez, I., Hughes, R., and Mayer, B.: SAP/ERK kinase-1 (SEK1) defines the SAP pathway regulating c-Jun N-terminal phosphorylation. Nature, 372: 794–798, 1994.

    CAS  PubMed  Google Scholar 

  94. Yah, M., Dai, T., Dek, J., Kyriakis, J., Zon, L., Woodgett, J., and Templeton, D.: MEKK1 activates the stress activated protein kinase (SAPK) in vivo, not MAP kinase, via direct phosphorylation of the SAPK activator SEK1. Nature, 372: 798–800, 1994.

    Google Scholar 

  95. Pombo, C.M., Bonventre, J.V., Woodgett, J.R., Kyriakis, J. M., and Force, T.: The stress-activated protein kinases (SAPKs) are major c-Jun amino terminal kinases actiated by ischemia and reperfusion. J. Biol. Chem., 269: 26546–26550, 1994.

    Google Scholar 

  96. Pulverer, B., Kyriakis, J., Avruch, J., Nikolakaki, H., and Woodgett, J.R.: Phosphorylation of c-Jun by MAP kinases. Nature, 353: 670–674, 1991.

    Article  CAS  PubMed  Google Scholar 

  97. Pulverer, B., Hughes, K., Franklin, C., Kraft, A., Leevers, S., and Woodgett, J.: Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase in U937 leukaemic cells. Oncogene, 8: 407–415, 1993.

    CAS  PubMed  Google Scholar 

  98. Devary, Y., Gottlieb, R., Smeal, T., and Karin, M.: The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71: 1081–1091, 1992.

    Article  CAS  PubMed  Google Scholar 

  99. De, S.K., McMaster, M.T., and Andrews, G.K.: Endotoxin induction of murine metallothionein gene expression. J. Biol. Chem., 265: 15267–15274, 1990.

    Google Scholar 

  100. Durnam, D.M., Hoffman, J.S., Quaife, C.J., Benditt, E.P., Chen, H.Y., Brinster, R.L, and Palmiter, R.D.: MT-III, a brain specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. USA, 81: 1053–1056, 1984.

    CAS  PubMed  Google Scholar 

  101. Abel, J., and de Ruiter, N.: Inhibition of hydroxylradical generated DNA degradation by metallothionein. Toxicol. Lett., 47: 191–196, 1989.

    Article  CAS  PubMed  Google Scholar 

  102. Thornalley, P.J., and Vasak, M.: Possible role of metallothionein in protection against radiation-induced oxidative stress. Biochem. Biophys. Acta, 827: 36–44, 1985.

    CAS  PubMed  Google Scholar 

  103. Rushmore, T.H., Morton, M.R., and Pickett, C.B.: The antioxidant responsive element. Activation by oxidative stress and identification of DNA consensus sequence required for functional activity. J. Biol. Chem., 266: 11632–11639, 1991.

    Google Scholar 

  104. Nguyen, T, Rushmore, T.H., and Pickett, C.B.: Transcriptional regulation of a rat liver glutathione-S-transferase Ya subunit gene. J. Biol. Chem., 269: 13656–13662, 1994.

    Google Scholar 

  105. Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., and Schaffner, W.: The transcription factor MTF-I is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J., 12: 1355–1362, 1993.

    CAS  PubMed  Google Scholar 

  106. Palmiter, R.D.: Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor MTF-I. Proc. Natl. Acad. Sci. USA, 91: 1219–1223, 1994.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Pahlavani Ph.D..

About this article

Cite this article

Pahlavani, M.A., Van Remmen, H. New directions for studying the role of free radicals in aging. AGE 20, 151–163 (1997). https://doi.org/10.1007/s11357-997-0014-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-997-0014-0

Key words

Navigation