Skip to main content

Advertisement

Log in

Metabolic dysfunction and the development of physical frailty: an aging war of attrition

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The World Health Organization recently declared 2021–2030 the decade of healthy aging. Such emphasis on healthy aging requires an understanding of the biologic challenges aging populations face. Physical frailty is a syndrome of vulnerability that puts a subset of older adults at high risk for adverse health outcomes including functional and cognitive decline, falls, hospitalization, and mortality. The physiology driving physical frailty is complex with age-related biological changes, dysregulated stress response systems, chronic inflammatory pathway activation, and altered energy metabolism all likely contributing. Indeed, a series of recent studies suggests circulating metabolomic distinctions can be made between frail and non-frail older adults. For example, marked restrictions on glycolytic and mitochondrial energy production have been independently observed in frail older adults and collectively appear to yield a reliance on the highly fatigable ATP-phosphocreatine (PCr) energy system. Further, there is evidence that age-associated impairments in the primary ATP generating systems (glycolysis, TCA cycle, electron transport) yield cumulative deficits and fail to adequately support the ATP-PCr system. This in turn may acutely contribute to several major components of the physical frailty phenotype including muscular fatigue, weakness, slow walking speed and, over time, result in low physical activity and accelerate reductions in lean body mass. This review describes specific age-associated metabolic declines and how they can collectively lead to metabolic inflexibility, ATP-PCr reliance, and the development of physical frailty. Further investigation remains necessary to understand the etiology of age-associated metabolic deficits and develop targeted preventive strategies that maintain robust metabolic health in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fried L, et al. Frailty in older adults: evidence for a phenotype. J Gerontol. 2001;56:M146–57.

    Article  CAS  Google Scholar 

  2. Fried L, et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat Aging. 2021;1:36–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez-Rodriguez L, et al. Aging is associated with circulating cytokine dysregulation. Cell Immunol. 2012;273(2):124–32.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrucci L, et al. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294–9.

    Article  PubMed  CAS  Google Scholar 

  5. Furman D, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gries K, Trappe S. The aging athlete: paradigm of healthy aging. Int J Sports Med. 2022;8:661–78.

    Google Scholar 

  7. Judge A, Dodd M. Metabolism. Essays Biochem. 2020;64:607–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meigs J, et al. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes. 2003;52:1475–84.

    Article  PubMed  CAS  Google Scholar 

  9. DeFronzo R, et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–7.

    Article  PubMed  CAS  Google Scholar 

  10. Gaster M, et al. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278:E910–6.

    Article  PubMed  CAS  Google Scholar 

  11. Houmard JA, et al. Skeletal muscle GLUT4 protein concentration and aging in humans. Diabetes. 1995;44(5):555–60.

    Article  PubMed  CAS  Google Scholar 

  12. Santos J, et al. The effect of age on glucose uptake and GLUT1 and GLUT4 expression in rat skeletal muscle. Cell Biochem Funct. 2012;30:191–7.

    Article  PubMed  Google Scholar 

  13. Murgia M, et al. Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep. 2017;19(11):1–15.

    Article  Google Scholar 

  14. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    Article  PubMed  CAS  Google Scholar 

  15. Cox J, et al. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. J Appl Physiol. 1999;86:2019–25.

    Article  PubMed  CAS  Google Scholar 

  16. Kalyani R, et al. Frailty status and altered glucose-insulin dynamics. J Gerontol. 2012;67:1300–6.

    Article  Google Scholar 

  17. Walston J, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med. 2002;162:2333–41.

    Article  PubMed  Google Scholar 

  18. Shoemaker M, et al. Differences in muscle energy metabolism and metabolic flexibility between sarcopenic and nonsarcopenic older adults. J Cachexia Sarcopenia Muscle. 2022;13:1224–37.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mutlu A, Duffy J, Wang M. Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 2021;56:1394–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Baba M, et al. The impact of the blood lipids levels on arterial stiffness. J Cardiovasc Dev Dis. 2023;10:1–20.

    Google Scholar 

  21. Li X, et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct Target Ther. 2022;7:1–12.

    PubMed  PubMed Central  Google Scholar 

  22. Johnson A, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18:e13048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Andreux P, et al. Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Sci Rep. 2018;8:8548.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rattray N, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10:5027.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malaguarnera G, et al. Carnitine serum levels in frail older adults. Nutrients. 2020;12:3887.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoek M, et al. Intramuscular short-chain acylcarnitines in elderly people are decreased in (pre-)frail females, but not in males. FASEB J. 2020;34:11658–71.

    Article  PubMed  Google Scholar 

  27. Malaguarnera G, et al. Acetyl-L-carnitine slows the progression from prefrailty to frailty in older subjects: a randomized interventional clinical trial. Curr Pharm Design. 2022;28:3158–66.

    Article  CAS  Google Scholar 

  28. Badrasawi M et al. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: a double-blind, randomized, placebo-controlled clinical trial. Clin Interv Aging. 2016;1675–1686.

  29. Crentsil V. Mechanistic contribution of carnitine deficiency to geriatric frailty. Ageing Res Rev. 2010;9:265–8.

    Article  PubMed  CAS  Google Scholar 

  30. López-Otín C, et al. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  31. López-Otín C, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.

    Article  PubMed  Google Scholar 

  32. Ubaida-Mohein C, et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. Elife. 2019;8:e49874.

    Article  Google Scholar 

  33. Ubaida-Mohein C, et al. Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. Elife. 2022;11:e74335.

    Article  Google Scholar 

  34. Zampino M, et al. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. Geroscience. 2020;42:1175–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu F, et al. Association of mitochondrial function, substrate utilization, and anaerobic metabolism with age-related perceived fatigability. J Gerontol A Biol Sci Med Sci. 2020;76:426–33.

    Article  PubMed Central  Google Scholar 

  36. Randle P. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14:263–83.

    Article  PubMed  CAS  Google Scholar 

  37. Goodpaster B, Sparks L. Metabolic flexibility in health and disease. Cell Metab. 2017;25(25):1027–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Muoio D. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159:1253–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Greenhaff P, et al. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans. 2002;30:275–80.

    Article  PubMed  CAS  Google Scholar 

  40. Prior S, et al. Metabolic inflexibility during submaximal aerobic exercise is associated with glucose intolerance in obese older adults. Obesity. 2014;22:451–7.

    Article  PubMed  CAS  Google Scholar 

  41. Ukropcova B, et al. Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes. 2007;56:720–7.

    Article  PubMed  CAS  Google Scholar 

  42. Turer A, et al. Energetics and metabolism in the failing heart: important but poorly understood. Curr Opin Clin Nutr Metab Care. 2010;13:458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee S, et al. Metabolic inflexibility and insulin resistance in obese adolescents with non-alcoholic fatty liver disease. Pediatr Diabetes. 2015;16:211–8.

    Article  PubMed  CAS  Google Scholar 

  44. Mancilla R et al. Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. JCI insight. 2022;8.

  45. Bergouignan A, et al. Effect of contrasted levels of habitual physical activity on metabolic flexibility. J Appl Physiol. 2013;114:371–9.

    Article  PubMed  CAS  Google Scholar 

  46. Covarrubias A, et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Bio. 2021;22:119–41.

    Article  CAS  Google Scholar 

  47. Fang E, et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23:899–916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Arum O, et al. Prevention of neuromusculoskeletal frailty in slow-aging Ames dwarf mice: longitudinal investigation of interaction of longevity genes and caloric restriction. PLoS One. 2013;8:e72255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kane A, et al. Impact of longevity interventions on a validated mouse clinical frailty index. J Gerontol A Biol Sci Med Sci. 2016;71:333–9.

    Article  PubMed  CAS  Google Scholar 

  50. Todorovic S, et al. Effects of different dietary protocols on general activity and frailty of male Wistar rats during aging. J Gerontol A Biol Sci Med Sci. 2018;73:1036–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yamada Y, et al. Caloric restriction and healthy life span: frail phenotype of nonhuman primates in the Wisconsin National Primate Research Center caloric restriction study. J Gerontol A Biol Sci Med Sci. 2017;73:273–8.

    Article  PubMed Central  Google Scholar 

  52. Fried L. Interventions for human frailty: physical activity as a model. Cold Spring Harb Perspect Med. 2016;6:a025916.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Travers J, et al. Building resilience and reversing frailty: a randomised controlled trial of a primary care intervention for older adults. Age Ageing. 2023;52:1–9.

    Article  Google Scholar 

  54. Petersen KF, et al. Effect of aging on muscle mitochondrial substrate utilization in humans. Proc Natl Acad Sci U S A. 2015;112(36):11330–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sial S, et al. Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol Endocrinol Metab. 1996;271:E983–9.

    Article  CAS  Google Scholar 

  56. Mittendorfer B, Klein S. Effect of aging on glucose and lipid metabolism during endurance exercise. Int J Sport Nutr Exerc Metab. 2001;11:S86–91.

    Article  PubMed  CAS  Google Scholar 

  57. Kent J, Fitzgerald L. In vivo mitochondrial function in aging skeletal muscle: capacity, flux, and patterns of use. J Appl Physiol. 2016;121:996–1003.

    Article  PubMed  CAS  Google Scholar 

  58. Adelnia F, et al. Moderate-to-vigorous physical activity is associated with higher muscle oxidative capacity in older adults. J Am Geriatr Soc. 2019;67:1695–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hargreaves M, Spriet LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8).

  60. Hargreaves M, Spriet L. Skeletal muscle energy metabolism during exercise. Nat Metabolism. 2020;2:817–28.

    Article  CAS  Google Scholar 

  61. Akki A, et al. Skeletal muscle ATP kinetics are impaired in frail mice. Age. 2014;36:21–30.

    Article  PubMed  CAS  Google Scholar 

  62. Walston J, et al. The physical and biological characterization of a frail mouse model. J Gerontol. 2008;63:391–8.

    Article  Google Scholar 

  63. Lewsey S, et al. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI insight. 2020;5:e141246.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Varadhan R, et al. Relationship of physical frailty to phosphocreatine recovery in muscle after mild stress in the oldest-old women. J Frailty Aging. 2019;8:162–8.

    PubMed  CAS  Google Scholar 

  65. Fazelzadeh P, et al. The muscle metabolome differs between healthy and frail older adults. J Proteome Res. 2016;15:499–509.

    Article  PubMed  CAS  Google Scholar 

  66. Debold EP, et al. Muscle fatigue from the perspective of a single crossbridge. Med Sci Sports Exerc. 2016;48(11):2270–80.

    Article  PubMed  CAS  Google Scholar 

  67. Sundberg C, et al. Effects of elevated H+ and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol. 2018;596:3993–4015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sundberg C, et al. Bioenergetic basis for the increased fatigability with ageing. J Physiol. 2019;597:4943–57.

    Article  PubMed  CAS  Google Scholar 

  69. Liu F, et al. Late-life plasma proteins associated with prevalent and incident frailty: a proteomic analysis. Aging Cell. 2023;00:1–14.

    Google Scholar 

  70. Mattson M, Arumugam T. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27:1176–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kaczor J, et al. The effect of aging on anaerobic and aerobic enzyme activities in human skeletal muscle. J Gerontol. 2006;61:339–44.

    Article  Google Scholar 

  72. Pastoris O, et al. The effects of aging on enzyme activities and metabolite concentrations in skeletal muscle from sedentary male and female subjects. Exp Gerontol. 2000;35:95–104.

    Article  PubMed  CAS  Google Scholar 

  73. Vigelsø A, et al. GAPDH and β-actin protein decreases with aging, making stain-free technology a superior loading control in western blotting of human skeletal muscle. J Appl Physiol. 2015;118:386–94.

    Article  PubMed  Google Scholar 

  74. Gelfi C, et al. The human muscle proteome in aging. J Proteome Res. 2006;5:1344–53.

    Article  PubMed  CAS  Google Scholar 

  75. Coggan A, et al. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol. 1992;47:B71–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Walston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fountain, W.A., Bopp, T.S., Bene, M. et al. Metabolic dysfunction and the development of physical frailty: an aging war of attrition. GeroScience 46, 3711–3721 (2024). https://doi.org/10.1007/s11357-024-01101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01101-7

Keywords

Navigation