Skip to main content
Log in

Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369(9573):1627–40.

    Article  CAS  PubMed  Google Scholar 

  2. Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Head K, Jurenka J. Inflammatory bowel disease part i: ulcerative colitis – pathophysiology and conventional and alternative treatment options. Altern Med Rev. 2003;8:247–83.

    PubMed  Google Scholar 

  4. Fu Y, Lee CH, Chi CC. Association of psoriasis with inflammatory bowel disease: a systematic review and meta-analysis. JAMA Dermatol. 2018;154(12):1417–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saccon TD, et al. Plasma miRNA profile of Crohn’s disease and rheumatoid arthritis patients. Biology (Basel). 2022;11:4.

    Google Scholar 

  6. Zhang B, et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut. 2021;70(1):85–91.

    Article  PubMed  Google Scholar 

  7. Yorulmaz E, et al. Metabolic syndrome frequency in inflammatory bowel diseases. Saudi J Gastroenterol. 2011;17(6):376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, et al. The risk of rheumatoid arthritis among patients with inflammatory bowel disease: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20(1):192.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh H, et al. Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience. 2019;41(6):907–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Faye A. Colombel, J-F, Aging and IBD: a new challenge for clinicians and researchers. Inflamm Bowel Dis. 2022;28:126–32.

    Article  PubMed  Google Scholar 

  11. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tchkonia T, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, et al. Senescent stem and transient amplifying cells in Crohn’s disease intestine. Inflamm Bowel Dis. 2020;26(2):e8–9.

    Article  PubMed  Google Scholar 

  15. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yousefzadeh MJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Justice JN, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chassaing B, et al. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104:15 251-1-5 25 14.

    Article  Google Scholar 

  19. Kitajima S, Takuma S, Morimoto M. Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp Anim. 1999;48:137–43.

    Article  CAS  PubMed  Google Scholar 

  20. Nambiar A, et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. EBioMedicine. 2023;90:104481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mullen M, et al. Fisetin attenuates cellular senescence accumulation during culture expansion of human adipose-derived stem cells. Stem Cells. 2023;41(7):698–710.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Viennois E, Tahsin A, Merlin D. Purification of Total RNA from DSS-treated Murine Tissue via Lithium Chloride Precipitation. Bio Protoc. 2018;8(9):e2829. https://doi.org/10.21769/BioProtoc.2829.

  24. Simões AE, Pereira DM, Amaral JD, Nunes AF, Gomes SE, Rodrigues PM, Lo AC, D'Hooge R, Steer CJ, Thibodeau SN, Borralho PM, Rodrigues CM. Efficient recovery of proteins from multiple source samples after TRIzol(®) or TRIzol(®)LS RNA extraction and long-term storage. BMC Genomics. 2013;14:181. https://doi.org/10.1186/1471-2164-14-181.

  25. Mijit M, et al. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10:3.

    Article  Google Scholar 

  26. Valieva Y, et al. Senescence-associated beta-galactosidase detection in pathology. Diagnostics (Basel). 2022;12:10.

    Google Scholar 

  27. Mor-Vaknin N, et al. Murine colitis is mediated by vimentin. Sci Rep. 2013;3:1045.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Andoh A, Nishida A. Molecular basis of intestinal fibrosis in inflammatory bowel disease. Inflamm Intest Dis. 2023;7(3–4):119–27.

    PubMed  Google Scholar 

  29. Frescas D, et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci U S A. 2017;114(9):E1668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coppe JP, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolodkin-Gal D, et al. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut. 2022;71(2):345–55.

    Article  CAS  PubMed  Google Scholar 

  32. Meng A, Zhang X, Shi Y. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Exp Ther Med. 2014;8(6):1772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tüfekci KU, Oner MG, Meuwissen RL, Genç S. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107:33–50. https://doi.org/10.1007/978-1-62703-748-8_3.

  34. Feng Q, Li Y, Zhang H, Wang Z, Nie X, Yao D, Han L, Chen WD, Wang YD. Deficiency of miRNA-149-3p shaped gut microbiota and enhanced dextran sulfate sodium-induced colitis. Mol Ther Nucleic Acids. 2022;30:208–25. https://doi.org/10.1016/j.omtn.2022.09.018

  35. Peck BC, et al. MicroRNAs classify different disease behavior phenotypes of Crohn’s disease and may have prognostic utility. Inflamm Bowel Dis. 2015;21(9):2178–87.

    Article  PubMed  Google Scholar 

  36. Xu G, et al. MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem. 2014;115(5):919–27.

    Article  CAS  PubMed  Google Scholar 

  37. Santana PT, et al. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci. 2022;23:7.

    Article  Google Scholar 

  38. Coman V, Vodnar DC. Gut microbiota and old age: modulating factors and interventions for healthy longevity. Exp Gerontol. 2020;141:111095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, et al. Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. Geroscience. 2021;43(2):709–25.

    Article  CAS  PubMed  Google Scholar 

  40. Catalkaya G, et al. Interaction of dietary polyphenols and gut microbiota: microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers. 2020;1(2):109–33.

    Article  Google Scholar 

  41. Yang B, et al. Lactobacillus ruminis alleviates DSS-induced colitis by inflammatory cytokines and gut microbiota modulation. Foods. 2021;10:6.

    CAS  Google Scholar 

  42. Stojanov S, Berlec A, Strukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:11.

    Article  Google Scholar 

  43. Geerlings SY, et al. Akkermansia muciniphila in the Human gastrointestinal tract: when, where, and how? Microorganisms. 2018;6:3.

    Article  Google Scholar 

  44. Lee JG, et al. Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model. J Nutr Biochem. 2022;101:108926.

    Article  CAS  PubMed  Google Scholar 

  45. van der Lugt B, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1 (-/Delta7) mice. Immun Ageing. 2019;16:6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saccon TD, et al. Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol A Biol Sci Med Sci. 2021;76(11):1895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodrigues VF, et al. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022;13:934695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Portincasa P, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci. 2022;23:3.

    Article  Google Scholar 

  49. den Besten G, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  Google Scholar 

  50. Nagao-Kitamoto H, Kamada N. Host-microbial cross-talk in Inflammatory Bowel Disease. Immune Netw. 2017;17(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schirmer M, et al. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol. 2019;17(8):497–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Latorre E, Torregrossa R, Wood ME, Whiteman M, Harries LW. Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging (Albany NY). 2018;10:1666–81. https://doi.org/10.18632/aging.101500.

  53. Wallace JL, et al. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology. 2009;137(2):569–78, 578 e1.

    Article  CAS  PubMed  Google Scholar 

  54. Qin M, et al. Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic Biol Med. 2019;137:99–109.

    Article  CAS  PubMed  Google Scholar 

  55. Blachier F, et al. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol. 2021;320(2):G125–35.

    Article  CAS  PubMed  Google Scholar 

  56. Motta JP, et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis. 2015;21(5):1006–17.

    Article  PubMed  Google Scholar 

  57. Perridon BW, Leuvenink HGD, Hillebrands J-L, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging. 2016;8(10):2264–89. https://doi.org/10.18632/aging.101026.

  58. Yang F, et al. Association of fecal microbiota with irritable bowel syndrome-diarrhea and effect of traditional chinese medicine for its management. Gastroenterol Res Pract. 2021;2021:7035557.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Herp S, et al. Mucispirillum schaedleri antagonizes salmonella virulence to protect mice against colitis. Cell Host Microbe. 2019;25(5):681-694 e8.

    Article  CAS  PubMed  Google Scholar 

  60. Sahu BD, Kumar JM, Sistla R. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: relevance of NF-kappaB signaling. J Nutr Biochem. 2016;28:171–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the USF Center for Microbiome Research and its core facilities for performing microbiome sequencing and bioinformatics support.

Funding

We would like to thank the National Institutes of Health (R56 AG074499, R56AG069676, R56AG064075, RF1AG071762, R21AG072379, U01AG076928, R21DE032197), the Department of Defense (W81XWH-18-PRARP AZ180098), the Ed and Ethel Moore Alzheimer’s Disease Research Program of the Florida Department of Health (22A17) for Drs. Masternak and Yadav groups, the Florida Legislative Grant 2014–2022 for Drs. Masternak and Naser groups, the European Commission program HORIZON 2020-MSCA-RISE, Marie Sklodowska-Curie Staff Actions for MMM, BR, AG, MS, and the Richard Tucker Gerontology Applied Research Grant sponsored by the Learning Institute for Elders at the University of Central Florida for the support for Sarah Ashiqueali.

Author information

Authors and Affiliations

Authors

Contributions

SAA, DC, AS, SAN, HY, and MMM conceptualized the project. SAA, DC, XS, AS, SAN, HY, and MMM developed the methodology. SAA, DC, SN, SS, DNG, AG, MS, BR, BMZ, and MAAM performed the experiments. MMM, HY, SN, BR, AG, MS, SAA acquired funding. HY, SAN, and MMM supervised the project. SAA wrote the original draft of the manuscript. All authors were responsible for editing and review of the manuscript.

Corresponding author

Correspondence to Michal M. Masternak.

Ethics declarations

Conflict of interest

Dr. Yadav is co-founder and chief scientific officer of the Postbiotics Inc, but has no conflict in the work presented in this manuscript. Other authors declare that no competing interests exist related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiqueali, S.A., Chaudhari, D., Zhu, X. et al. Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis. GeroScience 46, 3085–3103 (2024). https://doi.org/10.1007/s11357-024-01060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01060-z

Keywords

Navigation