Skip to main content

Advertisement

Log in

Utilizing multimodal approach to identify candidate pathways and biomarkers and predicting frailty syndrome in individuals from UK Biobank

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty, a prevalent clinical syndrome in aging adults, is characterized by poor health outcomes, represented via a standardized frailty-phenotype (FP), and Frailty Index (FI). While the relevance of the syndrome is gaining awareness, much remains unclear about its underlying biology. Further elucidation of the genetic determinants and possible underlying mechanisms may help improve patients’ outcomes allowing healthy aging.

Genotype, clinical and demographic data of subjects (aged 60–73 years) from UK Biobank were utilized. FP was defined on Fried’s criteria. FI was calculated using electronic-health-records. Genome-wide-association-studies (GWAS) were conducted and polygenic-risk-scores (PRS) were calculated for both FP and FI. Functional analysis provided interpretations of underlying biology. Finally, machine-learning (ML) models were trained using clinical, demographic and PRS towards identifying frail from non-frail individuals.

Thirty-one loci were significantly associated with FI accounting for 12% heritability. Seventeen of those were known associations for body-mass-index, coronary diseases, cholesterol-levels, and longevity, while the rest were novel. Significant genes CDKN2B and APOE, previously implicated in aging, were reported to be enriched in lipoprotein-particle-remodeling. Linkage-disequilibrium-regression identified specific regulation in limbic-system, associated with long-term memory and cognitive-function. XGboost was established as the best performing ML model with area-under-curve as 85%, sensitivity and specificity as 0.75 and 0.8, respectively.

This study provides novel insights into increased vulnerability and risk stratification of frailty syndrome via a multi-modal approach. The findings suggest frailty as a highly polygenic-trait, enriched in cholesterol-remodeling and metabolism and to be genetically associated with cognitive abilities. ML models utilizing FP and FI + PRS were established that identified frailty-syndrome patients with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data supporting the results reported in the manuscript are obtained from UK Biobank (www.ukbiobank.ac.uk), a major biomedical database, approved under project # 54423.

References

  1. W. H. Organization, "GHE: life expectancy and healthy life expectancy," Available online at: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy, no. Accessed in August 2022, 2022.

  2. van den Heuvel WJ, Olaroiu M. How important are health care expenditures for life expectancy? A comparative, European analysis. J Am Med Dir Assoc. 2017;18(3):276.e9-276.e12.

    Article  PubMed  Google Scholar 

  3. Jaba E, Balan CB, Robu I-B. The relationship between life expectancy at birth and health expenditures estimated by a cross-country and time-series analysis. Procedia Econ Finan. 2014;15:108–14.

    Article  Google Scholar 

  4. Lubitz J, Beebe J, Baker C. Longevity and medicare expenditures. 1995;332(15):999–1003. https://doi.org/10.1056/nejm199504133321506.

  5. Lubitz JD, Riley GF, Trends in Medicare payments in the last year of life. 1993;328 (15):1092–1096. https://doi.org/10.1056/nejm199304153281506.

  6. Spillman BC, Lubitz J. The effect of longevity on spending for acute and long-term care. 2000;342(19):1409–1415. https://doi.org/10.1056/nejm200005113421906.

  7. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Ger Soc. 2012;60(8):1487–92.

    Article  Google Scholar 

  8. Eyigor S, et al. Frailty prevalence and related factors in the older adult—FrailTURK Project. Age. 2015;37:1–13.

    Article  Google Scholar 

  9. O’Caoimh R, et al. Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age and Ageing. 2021;50(1):96–104. https://doi.org/10.1093/ageing/afaa219. (in English).

    Article  PubMed  Google Scholar 

  10. Ma Y et al. The association between frailty and severe disease among COVID-19 patients aged over 60 years in China: a prospective cohort study. Bmc Med. 2020;18(1). Art no. 274, https://doi.org/10.1186/s12916-020-01761-0.

  11. Welch C. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study. Age Ageing. 2021;50(3):617–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murad K, Kitzman DW. Frailty and multiple comorbidities in the elderly patient with heart failure: implications for management. Heart Fail Rev. 2012;17(4–5):581–8. https://doi.org/10.1007/s10741-011-9258-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mhaolain AMN, et al. Frailty, depression, and anxiety in later life. Int Psychogeriatr. 2012;24(8):1265–74. https://doi.org/10.1017/s1041610211002110.

    Article  Google Scholar 

  14. Xue QL. The Frailty Syndrome: definition and natural history, (in English). Clin Geriatr Med. 2011;27(1):1. https://doi.org/10.1016/j.cger.2010.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harmand MG-C, et al. Comparing the predictive value of three definitions of frailty: results from the three-city study. Arch Gerontol Geriatr. 2017;72:153–63.

    Article  Google Scholar 

  16. Cesari M, Gambassi G, Abellan van Kan G, Vellas B. The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing. 2014;43(1):10–2.

    Article  PubMed  Google Scholar 

  17. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging, (in eng). Sci World J. 2001;1:323–36. https://doi.org/10.1100/tsw.2001.58.

    Article  CAS  Google Scholar 

  18. Gale CR, Cooper C, Aihie Sayer A. Prevalence of frailty and disability: findings from the English Longitudinal Study of Ageing. Age Ageing. 2014;44(1):162–5. https://doi.org/10.1093/ageing/afu148.

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Caoimh R, et al. Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age Ageing. 2021;50(1):96–104.

    Article  PubMed  Google Scholar 

  20. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health, (in English). Lancet, Article. 2019;394(10206):1365–75. https://doi.org/10.1016/s0140-6736(19)31786-6.

    Article  Google Scholar 

  21. Won CW. Diagnosis and management of frailty in primary health care. Korean J Fam Med. 2020;41(4):207.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Livshits G, et al. Shared genetic influence on frailty and chronic widespread pain: a study from TwinsUK. Age Ageing. 2018;47(1):119–25. https://doi.org/10.1093/ageing/afx122.

    Article  PubMed  Google Scholar 

  23. Young ACM, Glaser K, Spector TD, Steves CJ. The identification of hereditary and environmental determinants of frailty in a cohort of UK Twins. Twin Res Hum Genet. 2016;19(6):600–9. https://doi.org/10.1017/thg.2016.72.

    Article  PubMed  Google Scholar 

  24. Kim S, Welsh DA, Cherry KE, Myers L, Jazwinski SM. Association of healthy aging with parental longevity, (in eng). Age (Dordr). 2013;35(5):1975–82. https://doi.org/10.1007/s11357-012-9472-0.

    Article  PubMed  Google Scholar 

  25. Atkins JL et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. 2021;20(9):e13459. https://doi.org/10.1111/acel.13459.

  26. Ravindrarajah R, Hazra NC, Charlton J, Jackson SHD, Dregan A, Gulliford MC. Incidence and mortality of fractures by frailty level over 80 years of age: cohort study using UK electronic health records. 2018;8(1):e018836. https://doi.org/10.1136/bmjopen-2017-018836.

  27. Petermann-Rocha F, et al. Comparison of two different frailty measurements and risk of hospitalisation or death from COVID-19: findings from UK Biobank. BMC Med. 2020;18(1):355. https://doi.org/10.1186/s12916-020-01822-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin GP et al. Do frailty measures improve prediction of mortality and morbidity following transcatheter aortic valve implantation? An analysis of the UK TAVI registry. 2018;8(6):e022543. https://doi.org/10.1136/bmjopen-2018-022543.

  29. Parmar KL, Law J, Carter B, et al. Frailty in older patients undergoing emergency laparotomy: results from the uk observational emergency laparotomy and frailty (ELF) study. Ann Surg. 2021;273(4):709–718. https://doi.org/10.1097/SLA.0000000000003402

  30. Petermann-Rocha F, et al. Associations between physical frailty and dementia incidence: a prospective study from UK Biobank. Lancet Health Longev. 2020;1(2):e58–68. https://doi.org/10.1016/S2666-7568(20)30007-6.

    Article  Google Scholar 

  31. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye Y, Noche RB, Szejko N, et al. A genome-wide association study of frailty identifies significant genetic correlation with neuropsychiatric, cardiovascular, and inflammation pathways [published online ahead of print, 2023 Mar 16]. Geroscience. 2023. https://doi.org/10.1007/s11357-023-00771-z

  33. Atkins JL, et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell. 2021;20(9):e13459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. W. H. Organization. Ageing overview. https://www.who.int/health-topics/ageing#tab=tab_1.

  35. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

  36. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8(1):24. https://doi.org/10.1186/1471-2318-8-24.

  37. Howlett SE, Rockwood MRH, Mitnitski A, Rockwood K. Standard laboratory tests to identify older adults at increased risk of death. BMC Med. 2014;12(1):171. https://doi.org/10.1186/s12916-014-0171-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pajewski NM, Lenoir K, Wells BJ, Williamson JD, Callahan KE. Frailty screening using the electronic health record within a Medicare accountable care organization. J Gerontol: Series A. 2019;74(11):1771–7.

    Article  Google Scholar 

  39. Fried LP, et al. Frailty in older adults: evidence for a phenotype, (in English). J Gerontol Ser A-Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.M146.

    Article  CAS  Google Scholar 

  40. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput Biol. 2015;11(4):e1004219. https://doi.org/10.1371/journal.pcbi.1004219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nature Commun. 2017;8(1):1826. https://doi.org/10.1038/s41467-017-01261-5.

    Article  CAS  Google Scholar 

  42. Finucane HK, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types, (in eng). Nat Genet. 2018;50(4):621–9. https://doi.org/10.1038/s41588-018-0081-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McGeary SE, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472):eaav1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karagkouni D, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018;46(D1):D239–45.

    Article  CAS  PubMed  Google Scholar 

  45. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278–84.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–31.

    Article  CAS  PubMed  Google Scholar 

  47. Ziemann M, Kaspi A, El-Osta A. Evaluation of microRNA alignment techniques. RNA. 2016;22(8):1120–1138. https://doi.org/10.1261/rna.055509.115

  48. Kamat MA, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations, (in eng). Bioinformatics. 2019;35(22):4851–3. https://doi.org/10.1093/bioinformatics/btz469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sollis E, et al. The NHGRI-EBI GWAS Catalog: knowledge base and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–85.

    Article  CAS  PubMed  Google Scholar 

  50. Relton CL, et al. Data resource profile: accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 2015;44(4):1181–90.

    Article  PubMed  Google Scholar 

  51. Bonder MJ, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 2017;49(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  52. Martens JH, Stunnenberg HG. BLUEPRINT: mapping human blood cell epigenomes. Haematologica. 2013;98(10):1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richardson TG, et al. Systematic Mendelian randomization framework elucidates hundreds of CpG sites which may mediate the influence of genetic variants on disease. Hum Mol Genet. 2018;27(18):3293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luijk R, et al. Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation. Nat Commun. 2018;9(1):3738.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Porcu E, Rüeger S, Lepik K, Santoni FA, Reymond A, Kutalik Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat Commun. 2019;10(1):3300.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bahcall OG. GTEx pilot quantifies eQTL variation across tissues and individuals. Nat Rev Genet. 2015;16(7):375–375.

    Article  CAS  PubMed  Google Scholar 

  57. Yao C, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun. 2018;9(1):3268.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin E, Kuo PH, Liu YL, Yu YW, Yang AC, Tsai SJ. Prediction of antidepressant treatment response and remission using an ensemble machine learning framework. Pharmaceuticals (Basel). 2020;13(10):305. Published 2020 Oct 13. https://doi.org/10.3390/ph13100305

  59. Vapnik V. The nature of statistical learning theory. Springer science & business media. 1999

  60. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  61. Loh WY. Classification and regression trees. Wiley Interdiscip Rev: Data Min Knowl Discov. 2011;1(1):14–23.

    Google Scholar 

  62. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992;41(1):191–201.

    Article  Google Scholar 

  63. Lundberg SM, Erion GG, Lee SI. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888. 2018.

  64. Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang DS, Dickson DW, Malter JS. beta-Amyloid degradation and Alzheimer's disease. J Biomed Biotechnol. 2006;2006(3):58406. https://doi.org/10.1155/JBB/2006/58406

  66. Cardoso AL, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases, (in English). Ageing Res Rev. 2018;47:214–77. https://doi.org/10.1016/j.arr.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  67. Sahay A, Molliver ME, Ginty DD, Kolodkin AL. Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J Neurosci. 2003;23(17):6671–80. https://doi.org/10.1523/JNEUROSCI.23-17-06671.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Romera-Liebana L, Orfila F, Segura JM, et al. Effects of a primary care-based multifactorial intervention on physical and cognitive function in frail, elderly individuals: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2018;73(12):1688–1674. https://doi.org/10.1093/gerona/glx259

  69. Serra-Prat M, Sist X, Domenich R, et al. Effectiveness of an intervention to prevent frailty in pre-frail community-dwelling older people consulting in primary care: a randomised controlled trial. Age Ageing. 2017;46(3):401–407. https://doi.org/10.1093/ageing/afw242

  70. Cameron ID, et al. A multifactorial interdisciplinary intervention reduces frailty in older people: randomized trial. BMC Med. 2013;11(1):1–10.

    Article  Google Scholar 

  71. Eklund K, Wilhelmson K, Gustafsson H, Landahl S, Dahlin-Ivanoff S. One-year outcome of frailty indicators and activities of daily living following the randomised controlled trial;“Continuum of care for frail older people.” BMC Geriatr. 2013;13(1):1–10.

    Article  Google Scholar 

  72. Blodgett J, Theou O, Kirkland S, Andreou P, Rockwood K. Frailty in NHANES: comparing the frailty index and phenotype. Arch Gerontol Geriatr. 2015;60(3):464–70.

    Article  PubMed  Google Scholar 

  73. Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–174. https://doi.org/10.1093/hmg/ddy327

  74. Cadby G, Giles C, Melton PE, et al. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. Nat Commun. 2022;13(1):3124. Published 2022 Jun 6. https://doi.org/10.1038/s41467-022-30875-7

  75. Mirhafez SR, et al. Zinc Finger 259 gene polymorphism rs964184 is associated with serum triglyceride levels and metabolic syndrome, (in Eng). Int J Mol Cell Med. 2016;5(1):8–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Trinder M, Vikulova D, Pimstone S, Mancini GBJ, Brunham LR. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis. 2022;340:35–43. https://doi.org/10.1016/j.atherosclerosis.2021.11.032

  77. Wright KM, Rand KA, Kermany A, et al. A prospective analysis of genetic variants associated with human lifespan. G3 (Bethesda). 2019;9(9):2863–2878. Published 2019 Sep 4. https://doi.org/10.1534/g3.119.400448

  78. Rajmohan V, Mohandas E. The limbic system, (in Eng). Indian J Psychiatry. 2007;49(2):132–9. https://doi.org/10.4103/0019-5545.33264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu LK, et al. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome, (in Eng). Aging. 2020;12(24):25319–36. https://doi.org/10.18632/aging.104135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cystatin C: a kidney function biomarker. Adv Clin Chem. 2015;68:57–69. https://doi.org/10.1016/bs.acc.2014.11.007

  82. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016;4:16041. Published 2016 Oct 18. https://doi.org/10.1038/boneres.2016.41

  83. McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016;15:817–828. Published 2016 Dec 15. https://doi.org/10.17179/excli2016-800

  84. Kashani K, Rosner MH, Ostermann M. Creatinine: From physiology to clinical application. Eur J Intern Med. 2020;72:9–14. https://doi.org/10.1016/j.ejim.2019.10.025

  85. Yin J, Tian L. Joint confidence region estimation for area under ROC curve and Youden index. Stat Med. 2014;33(6):985–1000.

    Article  PubMed  Google Scholar 

  86. Wang Q, Wang Y, Lehto K, Pedersen NL, Williams DM, Hägg S. Genetically-predicted life-long lowering of low-density lipoprotein cholesterol is associated with decreased frailty: a Mendelian randomization study in UK biobank. eBioMed. 2019;45:487–94. https://doi.org/10.1016/j.ebiom.2019.07.007.

    Article  Google Scholar 

  87. Wong TY, Massa MS, O’Halloran AM, Kenny RA, Clarke R. Cardiovascular risk factors and frailty in a cross-sectional study of older people: implications for prevention. Age Ageing. 2018;47(5):714–20. https://doi.org/10.1093/ageing/afy080.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mekli K, et al. Frailty Index associates with GRIN2B in two representative samples from the United States and the United Kingdom. PLOS One. 2018;13(11):e0207824. https://doi.org/10.1371/journal.pone.0207824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Timmers PR, Mounier N, Lall K, et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife. 2019;8:e39856. Published 2019 Jan 15. https://doi.org/10.7554/eLife.39856

  90. Pilling LC, Atkins JL, Bowman K, et al. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants. Aging (Albany NY). 2016;8(3):547–560. https://doi.org/10.18632/aging.100930

  91. Davies G, et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry. 2014;19(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  92. McKay GJ, et al. Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. Am J Epidemiol. 2011;173(12):1357–64.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW. Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a "frailty gene," not a "longevity gene". Genet Epidemiol. 2000;19(3):202–210. https://doi.org/10.1002/1098-2272(200010)19:33.0.CO;2-Q

  94. Mourtzi N, Ntanasi E, Yannakoulia M, et al. Apolipoprotein ε4 allele is associated with frailty syndrome: results from the hellenic longitudinal investigation of ageing and diet study. Age Ageing. 2019;48(6):917–921. https://doi.org/10.1093/ageing/afz098

  95. Sathyan S, Verghese J. Genetics of frailty: a longevity perspective. Transl Res. 2020;221:83–96. https://doi.org/10.1016/j.trsl.2020.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chhetri J, et al. Apolipoprotein E polymorphism and frailty: apolipoprotein ε4 allele is associated with fatigue but not frailty syndrome in a community-dwelling older population cohort. J Nutr Health Aging. 2021;25:410–5.

    Article  CAS  PubMed  Google Scholar 

  97. Garatachea N, et al. ApoE gene and exceptional longevity: insights from three independent cohorts, (in Eng). Exp Gerontol. 2014;53:16–23. https://doi.org/10.1016/j.exger.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  98. Ryu S, Atzmon G, Barzilai N, Raghavachari N, Suh Y. Genetic landscape of APOE in human longevity revealed by high-throughput sequencing, (in eng). Mech Ageing Dev. 2016;155:7–9. https://doi.org/10.1016/j.mad.2016.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer's disease. BMC Med. 2019;17(1):64. Published 2019 Mar 20. https://doi.org/10.1186/s12916-019-1299-4

  100. McKay GJ, Silvestri G, Chakravarthy U, Dasari S, Fritsche LG, Weber BH, Keilhauer CN, Klein ML, Francis PJ, Klaver CC, Vingerling JR, Ho L, De Jong PT, Dean M, Sawitzke J, Baird PN, Guymer RH, Stambolian D, Orlin A, Seddon JM, Patterson CC. Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. American J Epidemiol. 2011;173(12):1357–1364. https://doi.org/10.1093/aje/kwr015

  101. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemographic and health-related characteristics of uk biobank participants with those of the general population. Am J Epidemiol. 2017;186(9):1026–1034. https://doi.org/10.1093/aje/kwx246

Download references

Acknowledgements

This research has been conducted using data from UK Biobank (www.ukbiobank.ac.uk), a major biomedical database, approved under project # 54423.

Funding

This work was supported by China Medical University Hospital, Taichung, Taiwan (C1100708016) and National Science and Technology Council, Taiwan (NSTC 111-2634-F-002-017). The funders had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amrita Chattopadhyay or Oscar K. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Watson Hua-Sheng Tseng and Amrita Chattopadhyay are co-first authors with equal contribution.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 943 KB)

Supplementary file2 (DOCX 24 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, W.HS., Chattopadhyay, A., Phan, N.N. et al. Utilizing multimodal approach to identify candidate pathways and biomarkers and predicting frailty syndrome in individuals from UK Biobank. GeroScience 46, 1211–1228 (2024). https://doi.org/10.1007/s11357-023-00874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00874-7

Keywords

Navigation