Skip to main content

Advertisement

Log in

Chronological and reproductive aging-associated changes in resistance to oxidative stress in post-reproductive female mice

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Effort toward reproduction is often thought to negatively influence health and survival. Reproduction has been shown to influence metabolism, but the pathways and mechanisms have yet to be thoroughly elucidated. In the current experiments, our aim was to dissect the role of young and old ovarian tissues in the response to oxidative stress, through changes in liver oxidative stress response proteins. Liver proteins were analyzed in control mice at 4, 13, and 27 months of age and compared to 23-month-old mice which received young ovarian tissue transplants (intact or follicle-depleted) at 13 months of age. In control mice, of the 29 oxidative stress response proteins measured, 31% of the proteins decreased, 52% increased, and 17% were unchanged from 13 to 27 months. The greatest changes were seen during the period of reproductive failure, from 4 to 13 months of age. In transplanted mice, far more proteins were decreased from 13 to 23 months (93% in follicle-containing young ovary recipients; 62% in follicle-depleted young ovary recipients). Neither transplant group reflected changes seen in control mice between 13 and 27 months. Estradiol levels in transplant recipient mice were not increased compared with age-matched control mice. The current results suggest the presence of a germ cell- and estradiol-independent ovarian influence on aging-associated changes in the response to oxidative stress, which is manifest differently in reproductive-aged adults and post-reproductive-aged mice. The results presented here separate chronological and ovarian aging and the influence of estradiol in the response to aging-associated oxidative stress and support a novel, estradiol-independent role for the ovary in female health and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in the work are available from the corresponding author upon request.

References

  1. Ansere VA, Ali-Mondal S, Sathiaseelan R, Garcia DN, Isola JVV, Henseb JD, Saccon TD, Ocañas SR, Tooley KB, Stout MB, Schneider A, Freeman WM. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech Ageing Dev. 2021;94:111425. https://doi.org/10.1016/j.mad.2020.111425.

    Article  CAS  Google Scholar 

  2. Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle development and transgenic mouse models. Hum Reprod Update. 2006;12(5):537–55. https://doi.org/10.1093/humupd/dml022.

    Article  CAS  PubMed  Google Scholar 

  3. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315–22. https://doi.org/10.2337/db11-1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boot L, Muhlbock O, Thung P. Senile changes in the oestrous cycle and in ovarian structure in some inbred strains of mice. Acta Endocrinol. 1956;23(1):8–32. https://doi.org/10.1530/acta.0.0230008.

    Article  CAS  Google Scholar 

  5. Bridgeman SC, Ellison GC, Melton PE, Newsholme P, Mamotte CDS. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes Metab. 2018;20(7):1553–62. https://doi.org/10.1111/dom.13262.

    Article  PubMed  Google Scholar 

  6. Casalino SM, Linares JA, Goldraij A. Different effect of a restricted diet on isolated uteri of ovariectomized and non-ovariectomized rats. Influence of indomethacin and prostaglandins. Prostaglandins Leukot Essent Fatty Acids. 1994;51(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  7. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res. 2002;90(11):1159–66. https://doi.org/10.1161/01.res.0000020401.61826.ea.

    Article  CAS  PubMed  Google Scholar 

  8. Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, Ballabh P, Levy RJ, Hintze TH, Wolin MS, Austad SN, Podlutsky A, Ungvari Z. Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell. 2007;6(6):783–97. https://doi.org/10.1111/j.1474-9726.2007.00339.x.

    Article  CAS  PubMed  Google Scholar 

  9. Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, de Cabo R, Ungvari Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev. 2009;130(8):518–27. https://doi.org/10.1016/j.mad.2009.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Csiszar A, Gautam T, Sosnowska D, Tarantini S, Banki E, Tucsek Z, Toth P, Losonczy G, Koller A, Reglodi D, Giles CB, Wren JD, Sonntag WE, Ungvari Z. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol. 2014;307(3):H292-306. https://doi.org/10.1152/ajpheart.00307.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalal PK, Agarwal M. Postmenopausal syndrome. Indian J Psychiatry. 2015;57(2):S222–32. https://doi.org/10.4103/0019-5545.161483.

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem. 1998;273(35):22528–36. https://doi.org/10.1074/jbc.273.35.22528.

    Article  PubMed  Google Scholar 

  13. Duan S, Wang F, Cao J, Wang C. Exosomes derived from MicroRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Des Devel Ther. 2020;5(14):3143–58. https://doi.org/10.2147/DDDT.S255828.

    Article  Google Scholar 

  14. Eppig JJ, Wigglesworth K. Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components. Biol Reprod. 2000;63(4):1014–23. https://doi.org/10.1095/biolreprod63.4.1014.

    Article  CAS  PubMed  Google Scholar 

  15. Eshkoor SA, Marashi SJ, Ismail P, Rahman SA, Mirinargesi M, Adon MY, Devan RV. Association of GSTM1 and GSTT1 with ageing in auto repair shop workers. Genet Mol Res. 2012;11(2):1486–96. https://doi.org/10.4238/2012.May.21.5.

    Article  CAS  PubMed  Google Scholar 

  16. Faddy MJ, Telfer E, Gosden RG. The kinetics of pre-antral follicle development in ovaries of CBA/Ca mice during the first 14 weeks of life. Cell Tissue Kinet. 1987;20(6):551–60. https://doi.org/10.1111/j.1365-2184.1987.tb01364.x.

    Article  CAS  PubMed  Google Scholar 

  17. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Finch CE. The menopause and aging, a comparative perspective. J Steroid Biochem Mol Biol. 2014;142:132–41. https://doi.org/10.1016/j.jsbmb.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  19. Francisco S, Martinho V, Ferreira M, Reis A, Moura G, Soares AR, Santos MAS. The role of MicroRNAs in Proteostasis decline and protein aggregation during brain and skeletal muscle aging. Int J Mol Sci. 2022;23(6):3232. https://doi.org/10.3390/ijms23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fryar CD, Chen TC, Li X. Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010. NCHS Data Brief. 2012;103:1–8.

    Google Scholar 

  21. Garcia DN, Saccon TD, Pradiee J, Rincón JAA, Andrade KRS, Rovani MT, Mondadori RG, Cruz LAX, Barros CC, Masternak MM, Bartke A, Mason JB, Schneider A. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience. 2019;41(4):395–408. https://doi.org/10.1007/s11357-019-00087-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gosden RG, Jones EC, Jacks F. Pituitary-ovarian relationships during the post-reproductive phase of inbred mice. Exp Gerontol. 1978;13(3–4):159–66. https://doi.org/10.1016/0531-5565(78)90008-6.

    Article  CAS  PubMed  Google Scholar 

  23. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007;282(41):30107–19. https://doi.org/10.1074/jbc.M705325200.

    Article  CAS  PubMed  Google Scholar 

  24. Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, et al. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem. 1995;64(3):1216–23. https://doi.org/10.1046/j.1471-4159.1995.64031216.x.

    Article  CAS  PubMed  Google Scholar 

  25. Habermehl TL, Mason JB. Decreased sarcopenia in aged females with young ovary transplants was preserved in mice that received germ cell-depleted young ovaries. J Clin Med. 2019;8(1):40. https://doi.org/10.3390/jcm8010040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Habermehl, T.L., Parkinson, K.C. and Mason, JB. (2019). Germ cell depletion influenced neuromuscular, sensory, renal and metabolic function in postreproductive female mice. Obstetrics and Gynecology: Open Access: OBOA-131. https://doi.org/10.29011/2577-2236/100031

  27. Habermehl TL, Parkinson KC, Hubbard GB, Ikeno Y, Engelmeyer JI, Schumacher B, Mason JB. Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice. Geroscience. 2019;41(1):25–38. https://doi.org/10.1007/s11357-018-0049-4.

    Article  CAS  PubMed  Google Scholar 

  28. Habermehl TL, Underwood KB, Welch KD, Gawrys SP, Parkinson KC, Schneider A, Masternak MM, Mason JB. Aging-associated changes in motor function are ovarian somatic tissue-dependent, but germ cell and estradiol independent in post-reproductive female mice exposed to young ovarian tissue. Geroscience. 2022;44(4):2157–69. https://doi.org/10.1007/s11357-022-00549-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henderson VW. Aging, estrogens, and episodic memory in women. Cogn Behav Neurol. 2009;22(4):205–14. https://doi.org/10.1097/WNN.0b013e3181a74ce7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hense JD, Garcia DN, Isola JV, Alvarado-Rincón JA, Zanini BM, Prosczek JB, Stout MB, Mason JB, Walsh PT, Brieño-Enríquez MA, Schadock I, Barros CC, Masternak MM, Schneider A. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. Geroscience. 2022;23. https://doi.org/10.1007/s11357-022-00573-9

  31. Ho HY, Cheng ML, Chiu DT. Glucose-6-phosphate dehydrogenase–from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12(3):109–18. https://doi.org/10.1179/135100007X200209.

    Article  CAS  PubMed  Google Scholar 

  32. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1(1):483–91. https://doi.org/10.1016/j.redox.2013.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM, Ellison JA, Schadt EE, Verma IM, Lockhart DJ, Barlow C. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature. 2005;438(7068):662–6. https://doi.org/10.1038/nature04250.

    Article  CAS  PubMed  Google Scholar 

  34. Hoyer PB, Sipes IG. Assessment of follicle destruction in chemical-induced ovarian toxicity. Annu Rev Pharmacol Toxicol. 1996;36:307–31. https://doi.org/10.1146/annurev.pa.36.040196.001515.

    Article  CAS  PubMed  Google Scholar 

  35. Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E. Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem. 2007;87(3):372–84. https://doi.org/10.1016/j.nlm.2006.10.003.

    Article  CAS  PubMed  Google Scholar 

  36. Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis. 2000;7(6 Pt B):623–43. https://doi.org/10.1006/nbdi.2000.0299.

  37. Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol. 1999;52(4):303–7. https://doi.org/10.1016/s0895-4356(98)00170-x.

    Article  CAS  PubMed  Google Scholar 

  38. Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol. 2020;78. https://doi.org/10.1016/j.intimp.2019.105946

  39. Jones EC, Krohn PL. The relationships between age, numbers of oocytes and fertility in virgin and multiparous mice. J Endocrinol. 1961;21:469–95. https://doi.org/10.1677/joe.0.0210469.

    Article  CAS  PubMed  Google Scholar 

  40. Keshari RS, Verma A, Barthwal MK, Dikshit M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem. 2013;114(3):532–40. https://doi.org/10.1002/jcb.24391.

    Article  CAS  PubMed  Google Scholar 

  41. Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res. 2019;53(5):497–521. https://doi.org/10.1080/10715762.2019.1612059.

    Article  CAS  PubMed  Google Scholar 

  42. Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, et al. Comparison of endothelial function, O2.- and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol. 2006;291:2698–704.

    Google Scholar 

  43. Lee JY, Ryu D, Lim SW, Ryu KJ, Choi ME, Yoon SE, Kim K, Park C, Kim SJ. Exosomal miR-1305 in the oncogenic activity of hypoxic multiple myeloma cells: a biomarker for predicting prognosis. J Cancer. 2021;12(10):2825–34. https://doi.org/10.7150/jca.55553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lohff JC, Christian PJ, Marion SL, Arrandale A, Hoyer PB. Characterization of cyclicity and hormonal profile with impending ovarian failure in a novel chemical-induced mouse model of perimenopause. Comp Med. 2005;55(6):523–7.

    CAS  PubMed  Google Scholar 

  45. Mason JB, Habermehl TL, Underwood KB, Schneider A, Brieño-Enriquez MA, Masternak MM, Parkinson KC. The interrelationship between female reproductive aging and survival. J Gerontol A Biol Sci Med Sci. 2021;. https://doi.org/10.1093/gerona/glab252

  46. Mason JB, Cargill SL, Anderson GB, Carey JR. Transplantation of young ovaries to old mice increased life span in transplant recipients. J Gerontol A Biol Sci Med Sci. 2009;64(12):1207–11. https://doi.org/10.1093/gerona/glp134.

    Article  PubMed  Google Scholar 

  47. Mason JB, Cargill SL, Anderson GB, Carey JR. Ovarian status influenced the rate of body-weight change but not the total amount of body-weight gained or lost in female CBA/J mice. Exp Gerontol. 2010;45(6):435–41. https://doi.org/10.1016/j.exger.2010.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mason JB, Cargill SL, Griffey SM, Reader JR, Anderson GB, Carey JR. Transplantation of young ovaries restored cardioprotective influence in postreproductive-aged mice. Aging Cell. 2011;10(3):448–56. https://doi.org/10.1111/j.1474-9726.2011.00691.x.

    Article  CAS  PubMed  Google Scholar 

  49. Mason JB, Terry BC, Merchant SS, Mason HM, Nazokkarmaher M. Manipulation of ovarian function significantly influenced trabecular and cortical bone volume, architecture and density in mice at death. PLoS One. 2015;10(12):e0145821. https://doi.org/10.1371/journal.pone.0145821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mason JB, Parkinson KC, Habermehl TL. Orthotopic ovarian transplantation procedures to investigate the life- and health-span influence of ovarian senescence in female mice. J Vis Exp. 2018;132:56638. https://doi.org/10.3791/56638.

    Article  CAS  Google Scholar 

  51. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101(24):8852–7. https://doi.org/10.1073/pnas.0308096101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7:134–9. https://doi.org/10.1007/s11914-009-0023-2.

    Article  PubMed  Google Scholar 

  53. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43(4):477–503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034.

    Article  CAS  PubMed  Google Scholar 

  54. Nilsen J. Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol. 2008;29(4):463–75. https://doi.org/10.1016/j.yfrne.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  55. Nogueira V, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008;14(6):458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nunes ADC, Weigl M, Schneider A, Noureddine S, Yu L, Lahde C, Saccon TD, Mitra K, Beltran E, Grillari J, Kirkland JL, Tchkonia T, Robbins PD, Masternak MM. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. Geroscience. 2022;44(1):503–18. https://doi.org/10.1007/s11357-021-00490-3.

    Article  CAS  PubMed  Google Scholar 

  57. Olson E, Pravenec M, Landa V, Koh-Tan HHC, Dominiczak AF, McBride MW, Graham D. Transgenic overexpression of glutathione S-transferase μ-type 1 reduces hypertension and oxidative stress in the stroke-prone spontaneously hypertensive rat. J Hypertens. 2019;37(5):985–96. https://doi.org/10.1097/HJH.0000000000001960.

    Article  CAS  PubMed  Google Scholar 

  58. Papa L, Hahn M, Marsh EL, Evans BS, Germain D. SOD2 to SOD1 switch in breast cancer. J Biol Chem. 2014;289(9):5412–6. https://doi.org/10.1074/jbc.C113.526475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parkening TA, Fabricant JD, Heussner JC, Collins TJ, Smith ER. Orthotopic ovarian transplantations in young and aged C57BL/6J mice. Biol Reprod. 1985;32(5):989–97. https://doi.org/10.1095/biolreprod32.5.989.

    Article  CAS  PubMed  Google Scholar 

  60. Parkinson KC, Peterson RL, Mason JB. Cognitive behavior and sensory function were significantly influenced by restoration of active ovarian function in postreproductive mice. Exp Gerontol. 2017;92:28–33. https://doi.org/10.1016/j.exger.2017.03.002.

    Article  PubMed  Google Scholar 

  61. Peterson RL, Parkinson KC, Mason JB. Manipulation of ovarian function significantly influenced sarcopenia in postreproductive-age mice. J Transplant. 2016;2016:4570842. https://doi.org/10.1155/2016/4570842.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Peterson RL, Parkinson KC, Mason JB. Restoration of immune and renal function in aged females by re-establishment of active ovarian function. Reprod Fertil Dev. 2017;29:2052–9. https://doi.org/10.1007/s11357-018-0049-4.

    Article  CAS  PubMed  Google Scholar 

  63. Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 1998;39(1):77–88. https://doi.org/10.1016/S0008-6363(98)00077-7.

    Article  CAS  PubMed  Google Scholar 

  64. Piotrowski I, Zhu X, Saccon TD, Ashiqueali S, Schneider A, de Carvalho Nunes AD, Noureddine S, Sobecka A, Barczak W, Szewczyk M, Golusiński W, Masternak MM, Golusiński P. miRNAs as biomarkers for diagnosing and predicting survival of head and neck squamous cell carcinoma patients. Cancers (Basel). 2021;13(16):3980. https://doi.org/10.3390/cancers13163980.

    Article  CAS  PubMed  Google Scholar 

  65. Rivera Z, Christian PJ, Marion SL, Brooks HL, Hoyer PB. Steroidogenic capacity of residual ovarian tissue in 4-vinylcyclohexene diepoxide-treated mice. Biol Reprod. 2009;80(2):328–36. https://doi.org/10.1095/biolreprod.108.070359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robert H, Ferguson L, Reins O, Greco T, Prins ML, Folkerts M. Rodent estrous cycle monitoring utilizing vaginal lavage: no such thing as a normal cycle. J Vis Exp. 2021;(174):https://doi.org/10.3791/62884

  67. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76. https://doi.org/10.1016/j.cell.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010;65(2):161–6. https://doi.org/10.1016/j.maturitas.2009.08.003.

    Article  PubMed  Google Scholar 

  69. Signorelli SS, Neri S, Sciacchitano S, Pino LD, Costa MP, Marchese G, Celotta G, Cassibba N, Pennisi G, Caschetto S. Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas. 2006;53(1):77–82. https://doi.org/10.1016/j.maturitas.2005.03.001.

    Article  CAS  PubMed  Google Scholar 

  70. Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA. 2008;105:3438–42. https://doi.org/10.1073/pnas.0705467105.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thom T, Haase N, Rosamond W, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2006 update a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113(6):85–151. https://doi.org/10.1161/CIRCULATIONAHA.105.171600.

    Article  Google Scholar 

  72. Tyler KA, Habermehl TL, Mason JB. Manipulation of ovarian function influenced glucose metabolism in CBA/J mice. Exp Gerontol. 2019;126:110686. https://doi.org/10.1016/j.exger.2019.110686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A. 2014;111(42):15250–5. https://doi.org/10.1073/pnas.1412754111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ungvari Z, Csiszar A, Huang A, Kaminski PM, Wolin MS, Koller A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation. 2003;108:1253–8.

    Article  CAS  PubMed  Google Scholar 

  75. Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am J Physiol Heart Circ Physiol. 2011;301:H363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics. 2003;16(1):29–37. https://doi.org/10.1152/physiolgenomics.00122.2003.

    Article  CAS  PubMed  Google Scholar 

  77. Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol. 2017;5(455):131–47. https://doi.org/10.1016/j.mce.2016.12.021.

    Article  CAS  Google Scholar 

  78. Wexler BC, Iams SG, Judd JT. Arterial lesions in repeatedly bred spontaneously hypertensive rats. Circ Res. 1976;38(6):494–501. https://doi.org/10.1161/01.res.38.6.494.

    Article  CAS  PubMed  Google Scholar 

  79. Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S, Hayashi H, Chiba T, Mori R, Furuyama T, Mori N, Shimokawa I. FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell. 2010;9(3):372–82. https://doi.org/10.1111/j.1474-9726.2010.00563.x.

    Article  CAS  PubMed  Google Scholar 

  80. Yao S, Yin Y, Jin G, Li D, Li M, Hu Y, Feng Y, Liu Y, Bian Z, Wang X, Mao Y, Zhang J, Wu Z, Huang Z. Exosome-mediated delivery of miR-204-5p inhibits tumor growth and chemoresistance. Cancer Med. 2020;9(16):5989–98. https://doi.org/10.1002/cam4.3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol. 2017;11:30–7. https://doi.org/10.1016/j.redox.2016.10.014.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou Y, Richard S, Batchelor NJ, Oorschot DE, Anderson GM, Pankhurst MW. Anti-Müllerian hormone-mediated preantral follicle atresia is a key determinant of antral follicle count in mice. Hum Reprod. 2022;37(11):2635–45. https://doi.org/10.1093/humrep/deac204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Aaron Olsen, Mrs. Lisa DeSoi, and Nate Johnson for their help with the mice and Dr. Miguel Brieño-Enríquez and Dr. Suzannah Williams for the discussions and contributions regarding ovarian structure and function. Additionally, the authors thank the Utah Science Technology and Research Initiative (USTAR), the USDA ARS Poisonous Plant Research Laboratory, Utah State University, and the Utah State University, College of Veterinary Medicine and the Department of Animal, Dairy, and Veterinary Sciences.

Funding

Research reported in this publication was supported by the National Institute on Aging of the National Institutes of Health under award number R15AG061795 to J.B.M. and R56AG074499 to M.M.M and J.B.M. This work was also supported by the Nathan Shock Center Pilot Funding Program and the Oklahoma Nathan Shock Center core facility under award number P30 AG050911, the Utah Agricultural Experiment Station, grant number UTA01159, Utah State University, and by the College of Veterinary Medicine, Department of Animal, Dairy and Veterinary Sciences, Utah State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Mason.

Ethics declarations

Ethics approval

Animals were housed, and procedures were performed in an American Association for Accreditation of Laboratory Animal Care (AAALAC) approved facility in accordance with the National Institutes of Health and Animal Use guidelines. Animal care protocols were developed under the National Research Council guidelines found in the Guide for the Care and Use of Laboratory Animals. Protocols were approved by the Utah State University Institutional Animal Care and Use Committee (IACUC-10222).

Competing interests

The authors declare no competing interests.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, T.L., Underwood, K.B., Hansen, K.K. et al. Chronological and reproductive aging-associated changes in resistance to oxidative stress in post-reproductive female mice. GeroScience 46, 1159–1173 (2024). https://doi.org/10.1007/s11357-023-00865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00865-8

Keywords

Navigation