Skip to main content
Log in

Exposure factors associated with dementia among older adults in Iceland: the AGES-Reykjavik study

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The study aimed to assess whether factors related to cognitive performance were associated with the development of dementia. Additionally, the study aimed to establish whether cognitive performance at baseline or change in cognition between baseline and follow-up (five-year period) had a stronger association with whether an individual would fulfill a dementia criterion at follow-up. The data was collected from 2002 to 2011. Logistic regression was applied to the AGES-Reykjavik Study epidemiological data. The analysis, which builds upon previous data analyses of the same dataset, included 1,491 participants between the ages of 66 and 90. All those included were considered to have normal cognition at baseline; 8.2% (n = 123) of them fulfilled a dementia criterion at follow-up five years later. The study's results indicated that being high on cognitive reserve factors reduced the risk of developing dementia. Compared to other known dementia risk factors, cognitive reserve factors (education level, participation in leisure activities, and self-reported health) were more likely than others to have an association with dementia. Additionally, the study's findings showed that cognitive performance at baseline, rather than change in cognition between baseline and follow-up five years later, had a stronger association with dementia at the follow-up assessment. Together, these findings support the notion that promoting high cognitive reserve throughout the lifespan and reaching high cognitive performance is important in reducing dementia risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Global status report on the public health response to dementia. World Health Organization, Geneva, 2021. Accessed: Jul. 26, 2022. [Online]. Available: https://www.who.int/publications-detail-redirect/9789240033245.

  2. Nichols E, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105–25. https://doi.org/10.1016/S2468-2667(21)00249-8.

    Article  Google Scholar 

  3. Wolters FJ, et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium. Neurology. 2020;95(5):e519–31. https://doi.org/10.1212/WNL.0000000000010022.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: A review. Curr Hypertens Rep. 2017;19(3):24. https://doi.org/10.1007/s11906-017-0724-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feinkohl I, Price JF, Strachan MWJ, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimer’s Res Therapy. 2015;7(1):46. https://doi.org/10.1186/s13195-015-0130-5.

    Article  CAS  Google Scholar 

  6. Abete P, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. https://doi.org/10.1016/j.arr.2014.07.003.

    Article  PubMed  Google Scholar 

  7. Nishtala A, et al. Atrial fibrillation and cognitive decline in the Framingham Heart Study. Heart Rhythm. 2018;15(2):166–72. https://doi.org/10.1016/j.hrthm.2017.09.036.

    Article  PubMed  Google Scholar 

  8. Zaninotto P, Batty GD, Allerhand M, Deary IJ. Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. J Epidemiol Community Health. 2018;72(8):685–94. https://doi.org/10.1136/jech-2017-210116.

    Article  PubMed  Google Scholar 

  9. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2017;1863(5):1037–45. https://doi.org/10.1016/j.bbadis.2016.04.017.

    Article  CAS  Google Scholar 

  10. Cunningham C, O’Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand J Med Sci Sports. 2020;30(5):816–27. https://doi.org/10.1111/sms.13616.

    Article  PubMed  Google Scholar 

  11. Cooper R, et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40(1):14–23. https://doi.org/10.1093/ageing/afq117.

    Article  PubMed  Google Scholar 

  12. Sindi S, et al. Sleep disturbances and dementia risk: A multicenter study. Alzheimer’s Dement. 2018;14(10):1235–42. https://doi.org/10.1016/j.jalz.2018.05.012.

    Article  Google Scholar 

  13. Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Revue Neurologique. 2019;175(10):724–41. https://doi.org/10.1016/j.neurol.2019.08.005.

    Article  PubMed  Google Scholar 

  14. Casanova R, Saldana S, Lutz MW, Plassman BL, Kuchibhatla M, Hayden KM. Investigating predictors of cognitive decline using machine learning. J Gerontol B Psychol Sci Soc Sci. 2020;75(4):733–42. https://doi.org/10.1093/geronb/gby054.

    Article  PubMed  Google Scholar 

  15. Antoniou M. The advantages of bilingualism debate. Annu Rev Linguist. 2019;5(1):395–415. https://doi.org/10.1146/annurev-linguistics-011718-011820.

    Article  Google Scholar 

  16. Cheng S-T. Cognitive reserve and the prevention of dementia: The role of physical and cognitive activities. Curr Psychiatry Rep. 2016;18(9):85. https://doi.org/10.1007/s11920-016-0721-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weiss J, Puterman E, Prather AA, Ware EB, Rehkopf DH. A data-driven prospective study of dementia among older adults in the United States. PLOS ONE. 2020;15(10):e0239994. https://doi.org/10.1371/journal.pone.0239994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ritchie SJ, et al. Predictors of ageing-related decline across multiple cognitive functions. Intelligence. 2016;59:115–26. https://doi.org/10.1016/j.intell.2016.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salthouse TA. Correlates of cognitive change. J Exp Psychol Gen. 2014;143(3):1026–48. https://doi.org/10.1037/a0034847.

    Article  PubMed  Google Scholar 

  21. Seblova D, Berggren R, Lövdén M. Education and age-related decline in cognitive performance: Systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev. 2020;58:101005. https://doi.org/10.1016/j.arr.2019.101005.

    Article  CAS  PubMed  Google Scholar 

  22. Valsdóttir V, et al. Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study. Geroscience. 2022;44(6):2785–800. https://doi.org/10.1007/s11357-022-00642-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harris TB, et al. Age, gene/environment susceptibility–Reykjavik study: Multidisciplinary applied phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115.

    Article  PubMed  Google Scholar 

  24. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31(2):166–75. https://doi.org/10.1037/pag0000070.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singh-Manoux A et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ;344. 2012. https://doi.org/10.1136/bmj.d7622.

  26. Podsiadlo D, Richardson S. The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

    Article  CAS  PubMed  Google Scholar 

  27. Yesavage JA, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res. 1982;17(1):37–49. https://doi.org/10.1016/0022-3956(82)90033-4.

    Article  PubMed  Google Scholar 

  28. Delis DC, Kramer JH, Kaplan E, Ober BA. California verbal learning test manual - Adult version (Research edition). New York: The Psychological Corporation; 1987.

    Google Scholar 

  29. Wechsler DW. WAIS-III: Wechsler adult intelligence scale. Manual. New York: Psychological Corporation; 1955.

    Google Scholar 

  30. Salthouse TA, Babcock RL. Decomposing adult age differences in working memory. Dev Psychol. 1991;27(5):763–76.

    Article  Google Scholar 

  31. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.

    Article  Google Scholar 

  32. Tabachnick BG, Fidell LS. Using multivariate statistics. 4th ed. Boston: Allyn and Bacon; 2001.

    Google Scholar 

  33. Johnson W, te Nijenhuis J, Bouchard TJ. Still just 1 g: Consistent results from five test batteries. Intelligence. 2008;36(1):81–95. https://doi.org/10.1016/j.intell.2007.06.001.

    Article  Google Scholar 

  34. Saczynski JS, et al. Cognitive impairment: An increasingly important complication of type 2 diabetes: The age, gene/environment susceptibility–Reykjavik study. Am J Epidemiol. 2008;168(10):1132–9. https://doi.org/10.1093/aje/kwn228.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  36. Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33(2):261–304. https://doi.org/10.1177/0049124104268644.

    Article  Google Scholar 

  37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological). 1995;57(1):289–300.

    Google Scholar 

  38. Scheltens P, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90. https://doi.org/10.1016/S0140-6736(20)32205-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS One. 2013;8(6):e67346. https://doi.org/10.1371/journal.pone.0067346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. World Health Organization. Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization, Geneva, 2019. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/312180/9789241550543-eng.pdf?sequence=1&isAllowed=y. Accessed 7 May 2021

  41. Kivimäki M, et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimer’s Dement. 2018;14(5):601–9. https://doi.org/10.1016/j.jalz.2017.09.016.

    Article  Google Scholar 

  42. Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14–21. https://doi.org/10.1093/ageing/afv151.

    Article  Google Scholar 

  43. Singh-Manoux A, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimer’s Dement. 2018;14(2):178–86. https://doi.org/10.1016/j.jalz.2017.06.2637.

    Article  Google Scholar 

  44. Stern Y, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 2020;16(9):1305–11. https://doi.org/10.1016/j.jalz.2018.07.219.

    Article  Google Scholar 

  45. Groot C, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56. https://doi.org/10.1212/WNL.0000000000004802.

    Article  PubMed  Google Scholar 

  46. Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Aging Neuropsychol Cogn. 2016;23(1):40–60. https://doi.org/10.1080/13825585.2015.1041450.

    Article  Google Scholar 

  47. Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep. 2019;19(1):1–12. https://doi.org/10.1007/s11910-019-0917-z.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee DH et al. Effects of cognitive reserve in Alzheimer’s disease and cognitively unimpaired individuals. Front Aging Neurosci. 2022;13. https://doi.org/10.3389/fnagi.2021.784054.

  49. Dekhtyar S, Marseglia A, Xu W, Darin-Mattsson A, Wang H-X, Fratiglioni L. Genetic risk of dementia mitigated by cognitive reserve: A cohort study. Ann Neurol. 2019;86(1):68–78. https://doi.org/10.1002/ana.25501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H-X, MacDonald SWS, Dekhtyar S, Fratiglioni L. Association of lifelong exposure to cognitive reserve-enhancing factors with dementia risk: A community-based cohort study. PLOS Med. 2017;14(3):e1002251. https://doi.org/10.1371/journal.pmed.1002251.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu H, et al. Association of lifespan cognitive reserve indicator with dementia risk in the presence of brain pathologies. JAMA Neurol. 2019;76(10):1184–91. https://doi.org/10.1001/jamaneurol.2019.2455.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Formanek T, Kagstrom A, Winkler P, Cermakova P. Differences in cognitive performance and cognitive decline across European regions: a population-based prospective cohort study. Eur psychiatr. 2019;58:80–6. https://doi.org/10.1016/j.eurpsy.2019.03.001.

    Article  Google Scholar 

  53. Soldan A, et al. Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer’s disease. Neurobiol Aging. 2017;60:164–72. https://doi.org/10.1016/j.neurobiolaging.2017.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jørgensen TSH, et al. Ageing populations in the Nordic countries: Mortality and longevity from 1990 to 2014. Scand J Public Health. 2019;47(6):611–7. https://doi.org/10.1177/1403494818780024.

    Article  PubMed  Google Scholar 

  55. Knudsen AK, et al. Life expectancy and disease burden in the Nordic countries: results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet Public Health. 2019;4(12):e658–69. https://doi.org/10.1016/S2468-2667(19)30224-5.

    Article  Google Scholar 

  56. Jalovaara M, et al. Education, gender, and cohort fertility in the Nordic Countries. Eur J Population. 2019;35(3):563–86. https://doi.org/10.1007/s10680-018-9492-2.

    Article  Google Scholar 

Download references

Funding

This work was supported by The Foundation of St. Josef’s Hospital in cooperation with The Icelandic Gerontological Research Center, National University Hospital of Iceland. The AGES-Reykjavik Study was supported by the National Institutes of Health (Intramural Research Programs of the National Institute of Aging and the National Eye Institute, ZIAEY00401), National Institutes of Health contract number N01-AG-1–2100, the Icelandic Heart Association, and the Icelandic Parliament.

Additional grants were provided by Landspítali – University Hospital Research Fund, the Icelandic Gerontological Society, the Council on Aging in Iceland, Helga Jónsdóttir and Sigurliði Kristjánsson Memorial Fund and the Sustainability Institute and Forum (SIF) at Reykjavik University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaka Valsdóttir.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valsdóttir, V., Magnúsdóttir, B.B., Gylfason, H.F. et al. Exposure factors associated with dementia among older adults in Iceland: the AGES-Reykjavik study. GeroScience 45, 1953–1965 (2023). https://doi.org/10.1007/s11357-023-00804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00804-7

Keywords

Navigation