Skip to main content

Advertisement

Log in

Geroprotective interventions in the 3xTg mouse model of Alzheimer’s disease

  • Review
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S1–3.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimers Dement. 2019;15(3):321–87.

    Article  Google Scholar 

  3. Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R, Carrillo MC. Alzheimer's Disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement. 2014;10(3 Suppl):S105–10.

    PubMed  Google Scholar 

  4. Kitazawa M, Medeiros R, LaFerla FM. Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012;18:1131–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, et al. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther. 2011;3(1):1.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Guerreiro R, Bras J. The age factor in Alzheimer's disease. Genome Med. 2015;7:106.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, et al. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun. 2017;5(1):91.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer's disease. Curr Opin Neurobiol. 2021;69:131–8.

    Article  CAS  PubMed  Google Scholar 

  9. Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci U S A. 2006;103(25):9673–8.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011;121(2):193–205.

    Article  PubMed  Google Scholar 

  12. Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E, et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci U S A. 2008;105(14):5614–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. De Pietri TD, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135(23):3911–21.

    Article  Google Scholar 

  14. Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet. 2010;19(20):3959–69.

    Article  CAS  PubMed  Google Scholar 

  15. Pearson HA, Peers C. Physiological roles for amyloid beta peptides. J Physiol. 2006;575(Pt 1):5–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-beta pathway in Alzheimer's disease. Mol Psychiatry. 2021;26(10):5481–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci. 2001;4(3):231–2.

    Article  CAS  PubMed  Google Scholar 

  18. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008;105(17):6415–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dungan CM, Valentino T, Vechetti IJ Jr, Zdunek CJ, Murphy MP, Lin AL, et al. Exercise-mediated alteration of hippocampal Dicer mRNA and miRNAs is associated with lower BACE1 gene expression and Abeta(1-42) in female 3xTg-AD mice. J Neurophysiol. 2020;124(6):1571–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. The Lancet Neurology. 2007;6(4):352–61.

    Article  CAS  PubMed  Google Scholar 

  21. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010;13(7):805–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev. 2011;10(2):264–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. Journal of Alzheimer's disease : JAD. 2005;8(3):247–68.

    Article  CAS  PubMed  Google Scholar 

  24. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease - is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy MP, LeVine H 3rd. Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19(1):311–23.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bali J, Gheinani AH, Zurbriggen S, Rajendran L. Role of genes linked to sporadic Alzheimer's disease risk in the production of beta-amyloid peptides. Proc Natl Acad Sci U S A. 2012;109(38):15307–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aisen PS, Cummings J, Jack CR Jr, Morris JC, Sperling R, Frolich L, et al. On the path to 2025: understanding the Alzheimer's disease continuum. Alzheimers Res Ther. 2017;9(1):60.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Castillo-Carranza DL, Guerrero-Munoz MJ, Sengupta U, Hernandez C, Barrett AD, Dineley K, et al. Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer's disease mouse model. J Neurosci. 2015;35(12):1857–68.

    Article  Google Scholar 

  29. Sanguinetti E, Guzzardi MA, Panetta D, Tripodi M, De Sena V, Quaglierini M, et al. Combined effect of fatty diet and cognitive decline on brain metabolism, food intake, body weight, and counteraction by intranasal insulin therapy in 3xTg mice. Front Cell Neurosci. 2019;13:188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Duran-Aniotz C, Hetz C. Glucose metabolism: a sweet relief of Alzheimer's disease. Curr Biol. 2016;26(17):R806–9.

    Article  CAS  PubMed  Google Scholar 

  31. Newington JT, Harris RA, Cumming RC. Reevaluating metabolism in Alzheimer's disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis. 2013;2013:234572.

    PubMed Central  PubMed  Google Scholar 

  32. Krako N, Magnifico MC, Arese M, Meli G, Forte E, Lecci A, et al. Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer's disease. J Alzheimers Dis. 2013;37(4):747–58.

    Article  CAS  PubMed  Google Scholar 

  33. Baek SH, Park SJ, Jeong JI, Kim SH, Han J, Kyung JW, et al. Inhibition of Drp1 ameliorates synaptic depression, abeta deposition, and cognitive impairment in an Alzheimer's disease model. J Neurosci. 2017;37(20):5099–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. De Felice FG, Goncalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci. 2022;23(4):215–30.

    Article  PubMed  Google Scholar 

  35. Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG. Insulin resistance in Alzheimer's disease. Front Neurosci. 2018;12:830.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. The Lancet Neurol. 2020;19(9):758–66.

    Article  CAS  PubMed  Google Scholar 

  37. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs. 2003;17(1):27–45.

    Article  CAS  PubMed  Google Scholar 

  38. Wei Z, Koya J, Reznik SE. Insulin resistance exacerbates Alzheimer disease via multiple mechanisms. Front Neurosci. 2021;15:687157.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gonzalez A, Calfio C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther. 2022;14(1):56.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kyrtata N, Emsley HCA, Sparasci O, Parkes LM, Dickie BR. A systematic review of glucose transport alterations in Alzheimer's disease. Front Neurosci. 2021;15:626–36.

    Article  Google Scholar 

  41. Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-beta in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci. 2019;99:103390.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vandal M, White PJ, Chevrier G, Tremblay C, St-Amour I, Planel E, et al. Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer's disease. FASEB J. 2015;29(10):4273–84.

    Article  CAS  PubMed  Google Scholar 

  43. Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, et al. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease. Neurobiol Aging. 2017;58:1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Knight EM, Martins IV, Gumusgoz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging. 2014;35(8):1821–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Alzheimer's disease research models [Internet]. [cited June 4, 2020]. Available from: https://www.alzforum.org/research-models/alzheimers-disease.

  46. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles. Neuron. 2003;39(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  47. Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, et al. Temporal and regional progression of Alzheimer's disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18(1):e12873.

    Article  PubMed  Google Scholar 

  48. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron. 2005;45(5):675–88.

    Article  CAS  PubMed  Google Scholar 

  49. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol Aging. 2003;24(8):1063–70.

    Article  CAS  PubMed  Google Scholar 

  50. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.

    Article  CAS  PubMed  Google Scholar 

  51. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurol. 2001;56(1):127–9.

    Article  CAS  Google Scholar 

  52. Scheff SW, Price DA, Sparks DL. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging. 2001;22(3):355–65.

    Article  CAS  PubMed  Google Scholar 

  53. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25(39):8843–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Stover KR, Campbell MA, Van Winssen CM, Brown RE. Analysis of motor function in 6-month-old male and female 3xTg-AD mice. Behav Brain Res. 2015;281:16–23.

    Article  CAS  PubMed  Google Scholar 

  55. Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behav Brain Res. 2015;289:29–38.

    Article  CAS  PubMed  Google Scholar 

  56. Simcox J, Lamming DW. The central moTOR of metabolism. Dev Cell. 2022;57(6):691–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kennedy BK, Lamming DW. The mechanistic target of Rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007;104(35):14056–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mota-Martorell N, Jove M, Pradas I, Berdun R, Sanchez I, Naudi A, et al. Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity. Geroscience. 2020;42(4):1157–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193–6.

    Article  CAS  PubMed  Google Scholar 

  63. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006;20(2):174–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.

    Article  CAS  PubMed  Google Scholar 

  66. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wu JJ, Liu J, Chen EB, Wang JJ, Cao L, Narayan N, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013;4(5):913–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66(2):191–201.

    Article  PubMed  Google Scholar 

  70. Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent administration of Rapamycin extends the life span of female C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2016;71(7):876–81.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife. 2016:5.

  72. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol. 2010;176(5):2092–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011;10(24):4230–6.

    Article  CAS  PubMed  Google Scholar 

  75. Juricic P, Lu Y-X, Leech T, Drews LF, Paulitz J, Lu J, et al. Full geroprotection from brief rapamycin treatment by persistently increased intestinal autophagy. bioRxiv. 2022:2022.04.20.488884.

  76. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, Deik A, et al. Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci Adv. 2022;8(37):eabo5482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82.

    Article  CAS  PubMed  Google Scholar 

  80. Van Skike CE, Lin AL, Roberts Burbank R, Halloran JJ, Hernandez SF, Cuvillier J, et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell. 2020;19(1):e13057.

    PubMed  Google Scholar 

  81. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience. 2012;223:102–13.

    Article  CAS  PubMed  Google Scholar 

  82. An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, et al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol. 2003;163(2):591–607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta. 2014;1842(7):1144–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem. 2015;133(5):739–49.

    Article  CAS  PubMed  Google Scholar 

  85. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285(17):13107–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Caccamo A, Branca C, Talboom JS, Shaw DM, Turner D, Ma L, et al. Reducing ribosomal protein S6 Kinase 1 expression improves spatial memory and synaptic plasticity in a mouse model of Alzheimer's disease. J Neurosci. 2015;35(41):14042–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One. 2011;6(9):e25416.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, et al. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2018;314(4):H693–703.

    Article  PubMed  Google Scholar 

  89. Van Skike CE, Hussong SA, Hernandez SF, Banh AQ, DeRosa N, Galvan V. mTOR Attenuation with Rapamycin reverses neurovascular uncoupling and memory deficits in mice modeling Alzheimer's disease. J Neurosci. 2021;41(19):4305–20.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One. 2010;5(4):e9979.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: time for a clinical trial? Sci Transl Med. 2019;11(476)

  92. Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  93. Carosi JM, Sargeant TJ. Rapamycin and Alzheimer disease: a double-edged sword? Autophagy. 2019;15(8):1460–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Gonzales M. Cognition, age, and RaPamycin effectiveness - downregulatIon of thE mTor pathway ((CARPE DIEM)) ClinicalTrials.gov: The University of Texas Health Science Center at San Antonio 2019 [updated 2/4/2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04200911.

  95. Gonzales M, Seshadri S. Rapamycin - effects on Alzheimer's and cognitive health (REACH) ClinicalTrials.gov: The University of Texas Health Science Center at San Antonio; 2020 [updated 10/12/2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04629495.

  96. Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2021;23(1):56–73.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5:3557.

    Article  PubMed  Google Scholar 

  98. Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast. 2014;2014:563160.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14(2):275–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Van Cauwenberghe C, Vandendriessche C, Libert C, Vandenbroucke RE. Caloric restriction: beneficial effects on brain aging and Alzheimer's disease. Mamm Genome. 2016;27(7-8):300–19.

    Article  PubMed  Google Scholar 

  101. Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301(4):H1205–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Pak HH, Haws SA, Green CL, Koller M, Lavarias MT, Richardson NE, et al. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat Metab. 2021;3(10):1327–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11(1):35–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell. 2009;8(2):113–27.

    Article  CAS  PubMed  Google Scholar 

  105. Syntichaki P, Troulinaki K, Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature. 2007;445(7130):922–6.

    Article  CAS  PubMed  Google Scholar 

  106. Henderson ST, Bonafe M, Johnson TE. daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci. 2006;61(5):444–60.

    Article  PubMed  Google Scholar 

  107. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6(1):95–110.

    Article  CAS  PubMed  Google Scholar 

  108. Fok WC, Bokov A, Gelfond J, Yu Z, Zhang Y, Doderer M, et al. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell. 2014;13(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  109. Fok WC, Livi C, Bokov A, Yu Z, Chen Y, Richardson A, et al. Short-term rapamycin treatment in mice has few effects on the transcriptome of white adipose tissue compared to dietary restriction. Mech Ageing Dev. 2014;140:23–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Fok WC, Zhang Y, Salmon AB, Bhattacharya A, Gunda R, Jones D, et al. Short-term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice. J Gerontol A Biol Sci Med Sci. 2013;68(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  111. Yu Z, Wang R, Fok WC, Coles A, Salmon AB, Perez VI. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver. J Gerontol A Biol Sci Med Sci 2015;70(4):410-420.

  112. Orenduff MC, Coleman MF, Glenny EM, Huffman KM, Rezeli ET, Bareja A, et al. Differential effects of calorie restriction and rapamycin on age-related molecular and functional changes in skeletal muscle. Exp Gerontol. 2022;165:111841.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Ham DJ, Borsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, et al. Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nat Commun. 2022;13(1):2025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Mouton PR, Chachich ME, Quigley C, Spangler E, Ingram DK. Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci Lett. 2009;464(3):184–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, et al. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging. 2005;26(7):995–1000.

    Article  CAS  PubMed  Google Scholar 

  116. Schafer MJ, Alldred MJ, Lee SH, Calhoun ME, Petkova E, Mathews PM, et al. Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice. Neurobiol Aging. 2015;36(3):1293–302.

    Article  CAS  PubMed  Google Scholar 

  117. Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radic Biol Med. 2014;73:366–82.

    Article  CAS  PubMed  Google Scholar 

  118. Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, et al. Caloric restriction attenuates Beta-amyloid neruopathology in a mouse model of Alzheimer's disease. FASEB J. 2005;19(6):1–18.

    Article  PubMed  Google Scholar 

  119. Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging. 2008;29(10):1502–11.

    Article  CAS  PubMed  Google Scholar 

  120. Halagappa VK, Guo Z, Pearson M, Matsuoka Y, Cutler RG, Laferla FM, et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol Dis. 2007;26(1):212–20.

    Article  CAS  PubMed  Google Scholar 

  121. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40(13):111417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R, et al. Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis. 2006;10(4):417–22.

    Article  CAS  PubMed  Google Scholar 

  123. Witte AV, Fobker M, Gellner R, Knecht S, Floel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Mattson MP. Will caloric restriction and folate protect against AD and PD? Neurology. 2003;60(4):690–5.

    Article  CAS  PubMed  Google Scholar 

  125. Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. Transl Med Aging. 2021;5:17–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Mair W, Piper MD, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005;3(7):e223.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, Rodgers AC, et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat Aging. 2021;1(1):73–86.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, et al. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep. 2015;11(10):1529–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Parrella E, Maxim T, Maialetti F, Zhang L, Wan J, Wei M, et al. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model. Aging Cell. 2013;12(2):257–68.

    Article  CAS  PubMed  Google Scholar 

  131. Lamming DW, Cummings NE, Rastelli AL, Gao F, Cava E, Bertozzi B, et al. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget. 2015;6(31):31233–40.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, et al. Metabolism in the midwest: research from the midwest aging consortium at the 49(th) annual meeting of the american aging association. Geroscience. 2021;44(1):39–52.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Fernando W, Rainey-Smith SR, Gardener SL, Villemagne VL, Burnham SC, Macaulay SL, et al. Associations of dietary protein and fiber intake with brain and blood amyloid-beta. J Alzheimers Dis. 2018;61(4):1589–98.

    Article  CAS  PubMed  Google Scholar 

  134. Roberts RO, Roberts LA, Geda YE, Cha RH, Pankratz VS, O'Connor HM, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis. 2012;32(2):329–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Yeh TS, Yuan C, Ascherio A, Rosner BA, Blacker D, Willett WC. Long-term dietary protein intake and subjective cognitive decline in US men and women. Am J Clin Nutr. 2022;115(1):199–210.

    Article  PubMed  Google Scholar 

  136. Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969;281(15):811–6.

    Article  CAS  PubMed  Google Scholar 

  137. Li H, Ye D, Xie W, Hua F, Yang Y, Wu J, et al. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer's disease by targeting the mTOR signaling. Biosci Rep. 2018;38(4)

  138. Tournissac M, Vandal M, Tremblay C, Bourassa P, Vancassel S, Emond V, et al. Dietary intake of branched-chain amino acids in a mouse model of Alzheimer's disease: effects on survival, behavior, and neuropathology. Alzheimers Dement (N Y). 2018;4:677–87.

    Article  PubMed  Google Scholar 

  139. Ribeiro RV, Solon-Biet SM, Pulpitel T, Senior AM, Cogger VC, Clark X, et al. Of older mice and men: branched-chain amino acids and body composition. Nutrients. 2019;11(8)

  140. Zheng Y, Li Y, Qi Q, Hruby A, Manson JE, Willett WC, et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol. 2016;45(5):1482–92.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Ericksen RE, Lim SL, McDonnell E, Shuen WH, Vadiveloo M, White PJ, et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab. 2019;29(5):1151–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab. 2019;1(5):532–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22(4):421–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Bishop CA, Machate T, Henning T, Henkel J, Puschel G, Weber D, et al. Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle. Nutr Diabetes. 2022;12(1):20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmuller G, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun. 2019;10(1):3346.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Yu D, Richardson NE, Green CL, Spicer AB, Murphy ME, Flores V, et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 2021;33(5):905–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Tynkkynen J, Chouraki V, van der Lee SJ, Hernesniemi J, Yang Q, Li S, et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer's disease: a prospective study in eight cohorts. Alzheimers Dement. 2018;14(6):723–33.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Larsson SC, Markus HS. Branched-chain amino acids and Alzheimer's disease: a Mendelian randomization analysis. Sci Rep. 2017;7(1):13604.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492(1):203–6.

    Article  CAS  PubMed  Google Scholar 

  151. Hill CM, Berthoud HR, Munzberg H, Morrison CD. Homeostatic sensing of dietary protein restriction: a case for FGF21. Front Neuroendocrinol. 2018;51:125–31.

    Article  PubMed Central  PubMed  Google Scholar 

  152. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124(9):3913–22.

    Article  PubMed Central  PubMed  Google Scholar 

  154. Hill CM, Albarado DC, Coco LG, Spann RA, Khan MS, Qualls-Creekmore E, et al. FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun. 2022;13(1):1897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Hill CM, Laeger T, Albarado DC, McDougal DH, Berthoud HR, Munzberg H, et al. Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints. Sci Rep. 2017;7(1):8209.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Hill CM, Laeger T, Dehner M, Albarado DC, Clarke B, Wanders D, et al. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep. 2019;27(10):2934–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Green CL, Pak HH, Richardson NE, Flores V, Yu D, Tomasiewicz JL, et al. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 2022;34(2):209–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Ruhlmann C. Long-term caloric restriction in ApoE-deficient mice results in neuroprotection via Fgf21-induced AMPK/mTOR pathway. Aging. 2016;8(11):2777–89.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018;596(4):623–45.

    Article  CAS  PubMed  Google Scholar 

  160. Maida A, Chan JSK, Sjoberg KA, Zota A, Schmoll D, Kiens B, et al. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular metabolism. 2017;6(8):873–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007;28(12):2382–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, et al. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4):935–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Conte M, Sabbatinelli J, Chiariello A, Martucci M, Santoro A, Monti D, et al. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. Geroscience. 2021;43(2):985–1001.

    Article  CAS  PubMed  Google Scholar 

  165. Zanini D, Seper V, Javorac D, Stajer V, Cvetkovic M, Batez M, et al. Correlation between serum FGF21 and cognition in men and women over 60 years of age. Int J Gerontol. 2021;15(1):30–3.

    Google Scholar 

  166. Chen S, Chen ST, Sun Y, Xu Z, Wang Y, Yao SY, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease. Redox Biol. 2019;22:101133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Wang X, Liang G, et al. FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;97:1663–72.

    Article  CAS  Google Scholar 

  168. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Satjaritanun P, Wang X, Liang G, et al. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav. 2016;85:86–95.

    Article  CAS  PubMed  Google Scholar 

  169. Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, et al. FGF21 Attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol. 2018;55(6):4702–17.

    Article  CAS  PubMed  Google Scholar 

  170. Amiri M, Braidy N, Aminzadeh M. Protective effects of fibroblast growth factor 21 against Amyloid-Beta(1-42)-induced toxicity in SH-SY5Y cells. Neurotox Res. 2018;34(3):574–83.

    Article  CAS  PubMed  Google Scholar 

  171. Leng Y, Wang Z, Tsai LK, Leeds P, Fessler EB, Wang J, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215–23.

    Article  CAS  PubMed  Google Scholar 

  172. Lees EK, Krol E, Grant L, Shearer K, Wyse C, Moncur E, et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell. 2014;13(5):817–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Wanders D, Forney LA, Stone KP, Burk DH, Pierse A, Gettys TW. FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes. 2017;66(4):858–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Forney LA, Fang H, Sims LC, Stone KP, Vincik LY, Vick AM, et al. Dietary methionine restriction signals to the brain through fibroblast growth factor 21 to regulate energy balance and remodeling of adipose tissue. Obesity (Silver Spring). 2020;28(10):1912–21.

    Article  CAS  PubMed  Google Scholar 

  175. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Tournissac M, Bourassa P, Martinez-Cano RD, Vu TM, Hebert SS, Planel E, et al. Repeated cold exposures protect a mouse model of Alzheimer's disease against cold-induced tau phosphorylation. Mol Metab. 2019;22:110–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64(2):425–38.

    Article  CAS  PubMed  Google Scholar 

  178. Tsai S, Sitzmann JM, Dastidar SG, Rodriguez AA, Vu SL, McDonald CE, et al. Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Invest. 2015;125(8):2952–64.

    Article  PubMed Central  PubMed  Google Scholar 

  179. Jukic I, Kolobaric N, Stupin A, Matic A, Kozina N, Mihaljevic Z, et al. Carnosine, small but mighty-prospect of use as functional ingredient for functional food formulation. Antioxidants (Basel). 2021;10(7)

  180. Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, et al. Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One. 2011;6(3):e17971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Horning MS, Blakemore LJ, Trombley PQ. Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res. 2000;852(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  182. Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988;85(9):3175–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN. Toxic effects of beta-amyloid(25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci Lett. 1998;242(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  184. Trombley PQ, Horning MS, Blakemore LJ. Carnosine modulates zinc and copper effects on amino acid receptors and synaptic transmission. Neuroreport. 1998;9(15):3503–7.

    Article  CAS  PubMed  Google Scholar 

  185. Trombley PQ, Horning MS, Blakemore LJ. Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection. Biochem Mosc. 2000;65(7):807–16.

    CAS  Google Scholar 

  186. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A. 2009;106(47):20057–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780–91.

    Article  CAS  PubMed  Google Scholar 

  188. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2009;106(34):14670–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994;265(5177):1464–7.

    Article  CAS  PubMed  Google Scholar 

  190. Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem. 2007;282(33):24373–80.

    Article  CAS  PubMed  Google Scholar 

  191. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A. 1999;96(5):2414–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Hipkiss AR, Baye E, de Courten B. Carnosine and the processes of ageing. Maturitas. 2016;93:28–33.

    Article  CAS  PubMed  Google Scholar 

  193. Schon M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, et al. The potential of carnosine in brain-related disorders: a comprehensive review of current evidence. Nutrients. 2019;11(6)

  194. Caruso G, Godos J, Castellano S, Micek A, Murabito P, Galvano F, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: a systematic review with meta-analysis. Biomedicines. 2021;9(3)

  195. Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197–212.

    Article  PubMed Central  PubMed  Google Scholar 

  196. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89(2):337–43.

    Article  CAS  PubMed  Google Scholar 

  197. Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther. 2008;326(1):196–208.

    Article  CAS  PubMed  Google Scholar 

  198. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009;29(28):9078–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28(8):1765–73.

    Article  CAS  PubMed  Google Scholar 

  201. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.

    Article  CAS  PubMed  Google Scholar 

  202. Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer's disease. Neural Regen Res. 2018;13(4):742–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Voulgaropoulou SD, van Amelsvoort T, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer's disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res. 2019;1725:146476.

    Article  CAS  PubMed  Google Scholar 

  204. Zeng K, Tian L, Patel R, Shao W, Song Z, Liu L, et al. Diet polyphenol curcumin stimulates hepatic Fgf21 production and restores its sensitivity in high-fat-diet-fed male mice. Endocrinology. 2017;158(2):277–92.

    CAS  PubMed  Google Scholar 

  205. Wang C, Zhang X, Teng Z, Zhang T, Li Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol. 2014;740:312–20.

    Article  CAS  PubMed  Google Scholar 

  206. Ungurianu A, Zanfirescu A, Margina D. Regulation of gene expression through food-curcumin as a sirtuin activity modulator. Plants (Basel). 2022;11(13)

  207. Biyong EF, Tremblay C, Leclerc M, Caron V, Alfos S, Helbling JC, et al. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer's disease: evidence from clinicopathological and preclinical studies. Neurobiol Dis. 2021;161:105542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005;75(4):275–93.

    Article  CAS  PubMed  Google Scholar 

  209. Olson CR, Mello CV. Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res. 2010;54(4):489–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012;35(12):733–41.

    Article  CAS  PubMed  Google Scholar 

  211. Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, et al. Therapeutic insights elaborating the potential of retinoids in Alzheimer's disease. Front Pharmacol. 2022;13:976799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Lerner AJ, Gustaw-Rothenberg K, Smyth S, Casadesus G. Retinoids for treatment of Alzheimer's disease. Biofactors. 2012;38(2):84–9.

    Article  CAS  PubMed  Google Scholar 

  213. Mey J, McCaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist. 2004;10(5):409–21.

    Article  CAS  PubMed  Google Scholar 

  214. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem. 2014;129(3):366–76.

    Article  CAS  PubMed  Google Scholar 

  215. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimers Dement. 2014;10(4):485–502.

    Article  PubMed  Google Scholar 

  216. Bourdel-Marchasson I, Delmas-Beauvieux MC, Peuchant E, Richard-Harston S, Decamps A, Reignier B, et al. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing. 2001;30(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  217. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging. 2003;24(7):915–9.

    Article  CAS  PubMed  Google Scholar 

  218. Takamura R, Watamura N, Nikkuni M, Ohshima T. All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer's mouse model. J Neurosci Res. 2017;95(3):897–906.

    Article  CAS  PubMed  Google Scholar 

  219. Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  220. Cummings J. Bexarotene amyloid treatment for Alzheimer's disease (BEAT-AD) ClinicalTrials.gov: The Cleveland Clinic; 2013 [updated 02/12/2016.

  221. Heuser I. Retinoic acid homeostasis in neuropsychiatric diseases (RAHND) ClinicalTrials.gov: Charite University; 2015 [updated 08/09/2021.

  222. Miki T. Efficacy and safety of tamibarotene (OAM80) for Alzheimer's disease ClinicalTrials.gov: Osaka City University; 2010 [updated 07/22/2011.

  223. Ormerod AD, Thind CK, Rice SA, Reid IC, Williams JH, McCaffery PJ. Influence of isotretinoin on hippocampal-based learning in human subjects. Psychopharmacology. 2012;221(4):667–74.

    Article  CAS  PubMed  Google Scholar 

  224. Grodstein F, Kang JH, Glynn RJ, Cook NR, Gaziano JM. A randomized trial of beta carotene supplementation and cognitive function in men: the Physicians' Health Study II. Arch Intern Med. 2007;167(20):2184–90.

    Article  CAS  PubMed  Google Scholar 

  225. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    Article  CAS  PubMed  Google Scholar 

  226. Kim D, Cho J, Lee I, Jin Y, Kang H. Exercise attenuates high-fat diet-induced disease progression in 3xTg-AD mice. Med Sci Sports Exerc. 2017;49(4):676–86.

    Article  PubMed  Google Scholar 

  227. Geda YE, Silber TC, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, et al. Computer activities, physical exercise, aging, and mild cognitive impairment: a population-based study. Mayo Clin Proc. 2012;87(5):437–42.

    Article  PubMed Central  PubMed  Google Scholar 

  228. Maesako M, Uemura K, Iwata A, Kubota M, Watanabe K, Uemura M, et al. Continuation of exercise is necessary to inhibit high fat diet-induced beta-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice. PLoS One. 2013;8(9):e72796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  229. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, et al. Genetic enhancement of learning and memory in mice. Nature. 1999;401(6748):63–9.

    Article  CAS  PubMed  Google Scholar 

  230. Strohle A, Schmidt DK, Schultz F, Fricke N, Staden T, Hellweg R, et al. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: a systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am J Geriatr Psychiatry. 2015;23(12):1234–49.

    Article  PubMed  Google Scholar 

  231. Pena GS, Paez HG, Johnson TK, Halle JL, Carzoli JP, Visavadiya NP, et al. Hippocampal growth factor and myokine cathepsin B expression following aerobic and resistance training in 3xTg-AD mice. Int J Chronic Dis. 2020;2020:5919501.

    PubMed Central  PubMed  Google Scholar 

  232. Liu Y, Chu JMT, Yan T, Zhang Y, Chen Y, Chang RCC, et al. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer's disease mice. J Neuroinflammation. 2020;17(1):4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Garcia-Mesa Y, Gimenez-Llort L, Lopez LC, Venegas C, Cristofol R, Escames G, et al. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging. 2012;33(6):1124–e13.

    Article  Google Scholar 

  234. Bareiss SK, Johnston T, Lu Q, Tran TD. The effect of exercise on early sensorimotor performance alterations in the 3xTg-AD model of Alzheimer's disease. Neurosci Res. 2022;178:60–8.

    Article  PubMed  Google Scholar 

  235. Kim TW, Park SS, Park JY, Park HS. Infusion of plasma from exercised mice ameliorates cognitive dysfunction by increasing hippocampal neuroplasticity and mitochondrial functions in 3xTg-AD mice. Int J Mol Sci. 2020;21(9)

  236. Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, et al. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. J Alzheimers Dis. 2014;39(2):401–8.

    Article  CAS  PubMed  Google Scholar 

  237. Heisz JJ, Kovacevic A, Clark IB, Vandermorris S. Evaluation of a community-based exercise program for managing Alzheimer's disease. J Am Geriatr Soc. 2016;64(4):884–6.

    Article  PubMed  Google Scholar 

  238. Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer's disease: a randomized controlled trial. J Alzheimers Dis. 2016;50(2):443–53.

    Article  PubMed  Google Scholar 

  239. Lopez-Ortiz S, Lista S, Valenzuela PL, Pinto-Fraga J, Carmona R, Caraci F, et al. Effects of physical activity and exercise interventions on Alzheimer's disease: an umbrella review of existing meta-analyses. J Neurol. 2023;270(2):711–25.

    Article  PubMed  Google Scholar 

  240. Lopez-Ortiz S, Valenzuela PL, Seisdedos MM, Morales JS, Vega T, Castillo-Garcia A, et al. Exercise interventions in Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev. 2021;72:101479.

    Article  PubMed  Google Scholar 

  241. Menengiç KN, Yeldan I, Cinar N, Sahiner T. Effectiveness of motor-cognitive dual-task exercise via telerehabilitation in Alzheimer's disease: an online pilot randomized controlled study. Clin Neurol Neurosurg. 2022;223:107501.

    Article  Google Scholar 

  242. Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, et al. Aerobic exercise for Alzheimer's disease: a randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547.

    Article  PubMed Central  PubMed  Google Scholar 

  243. Pitkala KH, Poysti MM, Laakkonen ML, Tilvis RS, Savikko N, Kautiainen H, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173(10):894–901.

    Article  PubMed  Google Scholar 

  244. Rao AK, Chou A, Bursley B, Smulofsky J, Jezequel J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease. Am J Occup Ther. 2014;68(1):50–6.

    Article  PubMed Central  PubMed  Google Scholar 

  245. Tari AR, Berg HH, Videm V, Brathen G, White LR, Rosbjorgen RN, et al. Safety and efficacy of plasma transfusion from exercise-trained donors in patients with early Alzheimer's disease: protocol for the ExPlas study. BMJ Open. 2022;12(9):e056964.

    Article  PubMed Central  PubMed  Google Scholar 

  246. Watson J, O'Keeffe N, West SL. The importance of exercise in Alzheimer's disease and the minds in motion((R)) program: an editorial. J Funct Morphol Kinesiol. 2020;5(3)

  247. Yu F, Salisbury D, Mathiason MA. Inter-individual differences in the responses to aerobic exercise in Alzheimer's disease: findings from the FIT-AD trial. J Sport Health Sci. 2021;10(1):65–72.

    Article  PubMed  Google Scholar 

  248. Yu F, Thomas W, Nelson NW, Bronas UG, Dysken M, Wyman JF. Impact of 6-month aerobic exercise on Alzheimer's symptoms. J Appl Gerontol. 2015;34(4):484–500.

    Article  PubMed  Google Scholar 

  249. Yu F, Vock DM, Barclay TR. Executive function: responses to aerobic exercise in Alzheimer's disease. Geriatr Nurs. 2018;39(2):219–24.

    Article  PubMed  Google Scholar 

  250. Yu F, Vock DM, Zhang L, Salisbury D, Nelson NW, Chow LS, et al. Cognitive effects of aerobic exercise in Alzheimer's disease: a pilot randomized controlled trial. J Alzheimers Dis. 2021;80(1):233–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Meng L, Li XY, Shen L, Ji HF. Type 2 diabetes mellitus drugs for Alzheimer's disease: current evidence and therapeutic opportunities. Trends Mol Med. 2020;26(6):597–614.

    Article  CAS  PubMed  Google Scholar 

  252. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther. 2008;325(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  253. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res. 2017;42(8):2326–35.

    Article  CAS  PubMed  Google Scholar 

  254. Egefjord L, Gejl M, Møller A, Brændgaard H, Gottrup H, Antropova O, et al. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer's disease - protocol for a controlled, randomized double-blinded trial. Dan Med J. 2012;59(10)

  255. Zhang G, Kim S, Gu X, Yu SP, Wei L. DPP-4 Inhibitor linagliptin is neuroprotective in hyperglycemic mice with stroke via the AKT/mTOR pathway and anti-apoptotic effects. Neurosci Bull. 2020;36(4):407–18.

    Article  CAS  PubMed  Google Scholar 

  256. Kosaraju J, Holsinger RMD, Guo L, Tam KY. Linagliptin, a dipeptidyl peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer's disease. Mol Neurobiol. 2017;54(8):6074–84.

    Article  CAS  PubMed  Google Scholar 

  257. Yang M, Zhang L, Wang C, Liu H, Boden G, Yang G, et al. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance. PLoS One. 2012;7(11):e48392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Zhou J, Poudel A, Li L. Liraglutide improves insulin sensitivity in diabetic mice through reduction of inflammation and induction of thermogenesis. FASEB J. 2018;32(51)

  259. Bomba M, Ciavardelli D, Silvestri E, Canzoniero LM, Lattanzio R, Chiappini P, et al. Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis. 2013;4:e612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, et al. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2012;30(4):943–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. El-Megiri N, Mostafa YM, Ahmed A, Mehanna ET, El-Azab MF, Alshehri F, et al. Pioglitazone ameliorates hippocampal neurodegeneration, disturbances in glucose metabolism and AKT/mTOR signaling pathways in pentyelenetetrazole-kindled mice. Pharmaceuticals (Basel). 2022;15(9)

  262. Masciopinto F, Di Pietro N, Corona C, Bomba M, Pipino C, Curcio M, et al. Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice. Cell Death Dis. 2012;3:e448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm (Vienna). 2015;122(4):593–606.

    Article  CAS  PubMed  Google Scholar 

  264. Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  265. Li T, Jiao JJ, Holscher C, Wu MN, Zhang J, Tong JQ, et al. A novel GLP-1/GIP/Gcg triagonist reduces cognitive deficits and pathology in the 3xTg mouse model of Alzheimer's disease. Hippocampus. 2018;28(5):358–72.

    Article  CAS  PubMed  Google Scholar 

  266. Li T, Jiao JJ, Su Q, Holscher C, Zhang J, Yan XD, et al. A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca(2+) homeostasis in 3xTg-AD mice. Neuropharmacology. 2020;170:108042.

    Article  CAS  PubMed  Google Scholar 

  267. Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, et al. Insulin reverses the high-fat diet-induced increase in brain Abeta and improves memory in an animal model of Alzheimer disease. Diabetes. 2014;63(12):4291–301.

    Article  CAS  PubMed  Google Scholar 

  268. Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, et al. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol. 2014;261:610–9.

    Article  CAS  PubMed  Google Scholar 

  269. Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer's disease. J Alzheimers Dis. 2013;35(4):789–97.

    Article  PubMed Central  PubMed  Google Scholar 

  270. Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 2020;77(9):1099–109.

    Article  PubMed  Google Scholar 

  271. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Michailidis M, Tata DA, Moraitou D, Kavvadas D, Karachrysafi S, Papamitsou T, et al. Antidiabetic drugs in the treatment of Alzheimer's disease. Int J Mol Sci. 2022;23(9)

  273. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015;44(3):897–906.

    Article  CAS  PubMed  Google Scholar 

  274. Brunden KR, Yao Y, Potuzak JS, Ferrer NI, Ballatore C, James MJ, et al. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Pharmacol Res. 2011;63(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  275. Fernandez-Valenzuela JJ, Sanchez-Varo R, Munoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep. 2020;10(1):14776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, et al. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer's disease and related tauopathies. J Med Chem. 2014;57(14):6116–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  277. Cross DJ, Huber BR, Silverman MA, Cline MM, Gill TB, Cross CG, et al. Intranasal paclitaxel alters Alzheimer's disease phenotypic features in 3xTg-AD mice. J Alzheimers Dis. 2021;83(1):379–94.

    Article  CAS  PubMed  Google Scholar 

  278. Diaz JF, Barasoain I, Andreu JM. Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J Biol Chem. 2003;278(10):8407–19.

    Article  CAS  PubMed  Google Scholar 

  279. Zhang Y, Huang P, Liu X, Xiang Y, Zhang T, Wu Y, et al. Polyphyllin I inhibits growth and invasion of cisplatin-resistant gastric cancer cells by partially inhibiting CIP2A/PP2A/Akt signaling axis. J Pharmacol Sci. 2018;137(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  280. Zhou Y, Yang D, Chen H, Zheng C, Jiang H, Liu X, et al. Polyphyllin I attenuates cognitive impairments and reduces AD-like pathology through CIP2A-PP2A signaling pathway in 3XTg-AD mice. FASEB J. 2020;34(12):16414–31.

    Article  CAS  PubMed  Google Scholar 

  281. Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol. 2010;2010:198208.

    Article  PubMed Central  PubMed  Google Scholar 

  282. Wilson GD, Wilson TG, Hanna A, Fontanesi G, Kulchycki J, Buelow K, et al. Low dose brain irradiation reduces amyloid-beta and Tau in 3xTg-AD mice. J Alzheimers Dis. 2020;75(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  283. Kurrus JA, Hayes JK, Hoidal JR, Menendez MM, Elstad MR. Radiation therapy for tracheobronchial amyloidosis. Chest. 1998;114(5):1489–92.

    Article  CAS  PubMed  Google Scholar 

  284. Poovaneswaran S, Razak A, Lockman H, Bone M, Pollard K, Mazdai G. Tracheobronchial amyloidosis: utilization of radiotherapy as a treatment modality. Medscape J Med. 2008;10(2)

  285. Cuttler JM, Moore ER, Hosfeld VD, Nadolski DL. Treatment of Alzheimer disease with CT scans: a case report. Dose-Response. 2016;14(2)

  286. Cuttler JM, Abdellah E, Goldberg Y, Al-Shamaa S, Symons SP, Black SE, et al. Low doses of ionizing radiation as a treatment for Alzheimer's disease: a pilot study. J Alzheimers Dis. 2021;80(3):1119–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  287. Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, et al. Anticancer drugs repurposed for Alzheimer's disease: a systematic review. Alzheimers Res Ther. 2021;13(1):96.

    Article  PubMed Central  PubMed  Google Scholar 

  288. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4)

  289. Kim E, Bisson WH, Lohr CV, Williams DE, Ho E, Dashwood RH, et al. Histone and non-histone targets of dietary deacetylase inhibitors. Curr Top Med Chem. 2016;16(7):714–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci. 2008;28(45):11500–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. NeuroMolecular Med. 2004;5(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  292. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447(7141)

  293. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.

    Article  CAS  PubMed  Google Scholar 

  294. Janczura KJ, Volmar CH, Sartor GC, Rao SJ, Ricciardi NR, Lambert G, et al. Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci U S A. 2018;115(47):E11148–E57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  295. Jia H, Wang Y, Morris CD, Jacques V, Gottesfeld JM, Rusche JR, et al. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington's disease mice. PLoS One. 2016;11(3):e0152498.

    Article  PubMed Central  PubMed  Google Scholar 

  296. Leus NG, Zwinderman MR, Dekker FJ. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Curr Opin Chem Biol. 2016;33:160–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. Salech F, Ponce DP, Paula-Lima AC, SanMartin CD, Behrens MI. Nicotinamide, a poly [ADP-Ribose] polymerase 1 (PARP-1) inhibitor, as an adjunctive therapy for the treatment of Alzheimer's disease. Front Aging Neurosci. 2020;12:255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Maiese K. Nicotinamide: oversight of metabolic dysfunction through SIRT1, mTOR, and clock genes. Curr Neurovasc Res. 2020;17(5):765–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Grill J. Nicotinamide as an early Alzheimer's disease treatment (NEAT) ClinicalTrials.gov: University of California, Irvine 2017 [updated 12/19/2022. Available from: https://clinicaltrials.gov/ct2/show/NCT03061474.

  300. Pascoal TA, Chamoun M, Lax E, Wey HY, Shin M, Ng KP, et al. [(11)C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer's disease. Nat Commun. 2022;13(1):4171.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: a promising therapy for Alzheimer's disease. Oxid Med Cell Longev. 2011;2011

  302. Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol. 2020;11:537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  303. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. NAD(+) supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115(8):E1876–E85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  304. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, et al. Mitophagy and Alzheimer's disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  305. Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  306. Zhao H, Tian Y, Zuo Y, Zhang X, Gao Y, Wang P, et al. Nicotinamide riboside ameliorates high-fructose-induced lipid metabolism disorder in mice via improving FGF21 resistance in the liver and white adipose tissue. Food Funct. 2022;13(23):12400–11.

    Article  CAS  PubMed  Google Scholar 

  307. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    Article  CAS  PubMed  Google Scholar 

  308. Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002;50(11):3337–40.

    Article  CAS  Google Scholar 

  309. Corpas R, Grinan-Ferre C, Rodriguez-Farre E, Pallas M, Sanfeliu C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol. 2019;56(2):1502–16.

    Article  CAS  PubMed  Google Scholar 

  310. Malhotra A, Bath S, Elbarbry F. An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol. Oxidative Med Cell Longev. 2015;2015:803971.

    Article  Google Scholar 

  311. Novelle MG, Wahl D, Dieguez C, Bernier M, de Cabo R. Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev. 2015;21:1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  312. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem. 2009;110(5):1445–56.

    Article  CAS  PubMed  Google Scholar 

  313. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3(6):e2264.

    Article  PubMed Central  PubMed  Google Scholar 

  314. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas AM, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013;35(5):1851–65.

    Article  CAS  PubMed  Google Scholar 

  315. Broderick TL, Rasool S, Li R, Zhang Y, Anderson M, Al-Nakkash L, et al. Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci. 2020;21(19)

  316. Dennison JL, Volmar CH, Ke D, Wang J, Gravel E, Hammond-Vignini S, et al. JOTROL, a novel formulation of resveratrol, shows beneficial effects in the 3xTg-AD mouse model. J Alzheimers Dis. 2022;86(1):173–90.

    Article  CAS  PubMed  Google Scholar 

  317. Orr ME, Kotkowski E, Bair-Kelps D, Romo T, Espinoza S, Musi N, et al. Results from a pilot study: the effects of nicotinamide riboside on mild cognitive impairment. Alzheimers Dement. 2020;16(S9)

  318. Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer's disease. Ann N Y Acad Sci. 2017;1403(1):142–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  319. Chen W, Lu H, Yang J, Xiang H, Peng H. Sphingosine 1-phosphate in metabolic syndrome (Review). Int J Mol Med. 2016;38(4):1030–8.

    Article  CAS  PubMed  Google Scholar 

  320. Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, et al. Sphingosine-1-phosphate metabolism in the regulation of obesity/type 2 diabetes. Cells. 2020;9(7)

  321. Couttas TA, Kain N, Daniels B, Lim XY, Shepherd C, Kril J, et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. Acta Neuropathol Commun. 2014;2:9.

    Article  PubMed Central  PubMed  Google Scholar 

  322. Fagan SG, Bechet S, Dev KK. Fingolimod rescues memory and improves pathological hallmarks in the 3xTg-AD model of Alzheimer's disease. Mol Neurobiol. 2022;59(3):1882–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  323. Czubowicz K, Jesko H, Wencel P, Lukiw WJ, Strosznajder RP. The role of ceramide and sphingosine-1-phosphate in Alzheimer's disease and other neurodegenerative disorders. Mol Neurobiol. 2019;56(8):5436–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  324. O'Sullivan S, Dev KK. Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. 2017;113(Pt B):597–607.

    Article  CAS  PubMed  Google Scholar 

  325. Angelopoulou E, Piperi C. Beneficial effects of fingolimod in Alzheimer's disease: molecular mechanisms and therapeutic potential. NeuroMolecular Med. 2019;21(3):227–38.

    Article  CAS  PubMed  Google Scholar 

  326. Fessel J. Reversing Alzheimer's disease dementia with clemastine, fingolimod, or rolipram, plus anti-amyloid therapy. Alzheimers Dement (N Y). 2022;8(1):e12242.

    PubMed  Google Scholar 

  327. Medeiros R, Castello NA, Cheng D, Kitazawa M, Baglietto-Vargas D, Green KN, et al. alpha7 nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184(2):520–9.

    Article  CAS  PubMed  Google Scholar 

  328. Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010;362(4):329–44.

    Article  CAS  PubMed  Google Scholar 

  329. D'Andrea MRD, Nagele RG. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in AD pyramidal neurons. Curr Pharm Des. 2006;12:677–84.

    Article  CAS  PubMed  Google Scholar 

  330. Martin LF, Kem WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology. 2004;174(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  331. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  CAS  PubMed  Google Scholar 

  332. Nagele RG, D'Andrea MRD, Anderson WJ, Wang HY. Intracellular accumulation of Beta-amyloid1-42 in neurons is facilitated by the Alpha-7 nicotinic acetylcholine receptor in Alzheimer's Disease. Neuroscience. 2002;110(2):199–211.

    Article  CAS  PubMed  Google Scholar 

  333. Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000;275(8):5626–32.

    Article  CAS  PubMed  Google Scholar 

  334. Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000;75(3):1155–61.

    Article  CAS  PubMed  Google Scholar 

  335. Deardorff WJ, Shobassy A, Grossberg GT. Safety and clinical effects of EVP-6124 in subjects with Alzheimer's disease currently or previously receiving an acetylcholinesterase inhibitor medication. Expert Rev Neurother. 2015;15(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  336. Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D. Effects of a flexible galantamine dose in Alzheimer's disease: a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2001;71(5):589–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  337. Aisen P. Memory improvement through nicotine dosing (MIND) study (MIND) ClinicalTrials.gov: University of Southern California 2016 [updated 02/13/2023.

  338. Alzforum. Rivastigmine Alzforum2023 [Available from: https://www.alzforum.org/therapeutics/rivastigmine.

  339. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 2004;43(3):321–32.

    Article  CAS  PubMed  Google Scholar 

  340. Walls KC, Ager RR, Vasilevko V, Cheng D, Medeiros R, LaFerla FM. p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett. 2014;575:96–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  341. Guell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, Villegas S. Progression of Alzheimer's disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: an in vivo longitudinal study using magnetic resonance imaging and spectroscopy. NMR Biomed. 2020;33(5):e4263.

    Article  CAS  PubMed  Google Scholar 

  342. Movsesyan N, Ghochikyan A, Mkrtichyan M, Petrushina I, Davtyan H, Olkhanud PB, et al. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy. PLoS One. 2008;3(5):e2124.

    Article  PubMed Central  PubMed  Google Scholar 

  343. Rajamohamedsait H, Rasool S, Rajamohamedsait W, Lin Y, Sigurdsson EM. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-beta pathologies in 3xTg mice. Sci Rep. 2017;7(1):17034.

    Article  PubMed Central  PubMed  Google Scholar 

  344. Roda AR, Esquerda-Canals G, Marti-Clua J, Villegas S. Cognitive impairment in the 3xTg-AD mouse model of Alzheimer's disease is affected by abeta-immunotherapy and cognitive stimulation. Pharmaceutics. 2020;12(10)

  345. Roda AR, Montoliu-Gaya L, Serra-Mir G, Villegas S. Both amyloid-beta peptide and tau protein are affected by an anti-amyloid-beta antibody fragment in elderly 3xTg-AD mice. Int J Mol Sci. 2020;21(18)

  346. St-Amour I, Pare I, Tremblay C, Coulombe K, Bazin R, Calon F. IVIg protects the 3xTg-AD mouse model of Alzheimer's disease from memory deficit and Abeta pathology. J Neuroinflammation. 2014;11:54.

    Article  PubMed Central  PubMed  Google Scholar 

  347. Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367(21):2015–25.

    Article  CAS  PubMed  Google Scholar 

  348. Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, et al. Intravenous immunoglobulins as a treatment for Alzheimer's disease: rationale and current evidence. Drugs. 2010;70(5):513–28.

    Article  CAS  PubMed  Google Scholar 

  349. Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(10):1472–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  350. Szabo P, Relkin N, Weksler ME. Natural human antibodies to amyloid beta peptide. Autoimmun Rev. 2008;7(6):415–20.

    Article  CAS  PubMed  Google Scholar 

  351. Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, et al. Immunotherapy for Alzheimer's disease: targeting beta-amyloid and beyond. Transl Neurodegener. 2022;11(1):18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  352. Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer's disease-a review. Vaccines (Basel). 2022;10(9)

  353. Baglietto-Vargas D, Forner S, Cai L, Martini AC, Trujillo-Estrada L, Swarup V, et al. Generation of a humanized Abeta expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nat Commun. 2021;12(1):2421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  354. Cho JD, Kim YA, Rafikian EE, Yang M, Santa-Maria I. Marked mild cognitive deficits in humanized mouse model of Alzheimer's-type tau pathology. Front Behav Neurosci. 2021;15:634157.

    Article  PubMed Central  PubMed  Google Scholar 

  355. Kshirsagar S, Alvir RV, Hindle A, Kumar S, Vijayan M, Pradeepkiran JA, et al. Early cellular, molecular, morphological and behavioral changes in the humanized amyloid-beta-knock-in mouse model of late-onset Alzheimer's disease. Cells. 2022;11(4)

  356. Souder DC, Dreischmeier IA, Smith AB, Wright S, Martin SA, Sagar MAK, et al. Rhesus monkeys as a translational model for late-onset Alzheimer's disease. Aging Cell. 2021;20(6):e13374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  357. Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21)

  358. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  359. Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, et al. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell. 2019;18(2):e12898.

    Article  PubMed Central  PubMed  Google Scholar 

  360. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    Article  PubMed