Skip to main content

Advertisement

Log in

A genome-wide association study of frailty identifies significant genetic correlation with neuropsychiatric, cardiovascular, and inflammation pathways

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is an aging-related clinical phenotype defined as a state in which there is an increase in a person’s vulnerability for dependency and/or mortality when exposed to a stressor. While underlying mechanisms leading to the occurrence of frailty are complex, the importance of genetic factors has not been fully investigated. We conducted a large-scale genome-wide association study (GWAS) of frailty, as defined by the five criteria (weight loss, exhaustion, physical activity, walking speed, and grip strength) captured in the Fried Frailty Score (FFS), in 386,565 European descent participants enrolled in the UK Biobank (mean age 57 [SD 8] years, 208,481 [54%] females). We identified 37 independent, novel loci associated with the FFS (p < 5 × 10–8), including seven loci without prior described associations with other traits. The variants associated with FFS were significantly enriched in brain tissues as well as aging-related pathways. Our post-GWAS bioinformatic analyses revealed significant genetic correlations between FFS and cardiovascular-, neurological-, and inflammation-related diseases/traits, and subsequent Mendelian Randomization analyses identified causal associations with chronic pain, obesity, diabetes, education-related traits, joint disorders, and depressive/neurological, metabolic, and respiratory diseases. The GWAS signals were replicated in the Health and Retirement Study (HRS, n = 9,720, mean age 73 [SD 7], 5,582 [57%] females), where the polygenic risk score built from UKB GWAS was significantly associated with the FFS in HRS individuals (OR per SD of the score 1.27, 95% CI 1.22–1.31, p = 1.3 × 10–11). These results provide new insight into the biology of frailty by comprehensively evaluating its genetic architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The UKBB data are available through the UK Biobank Access Management System. The HRS data are accessible on dbGap with accession number phs000428.v2.p2. A reporting summary for this article is available in the supplementary tables. The full GWAS summary statistics produced by this study are freely available on figshare (https://figshare.com/s/6683396c68807fe4e729).

References

  1. Cesari M, Calvani R, Marzetti E. Frailty in older persons. Clin Geriatr Med. 2017;33:293–303.

    PubMed  Google Scholar 

  2. Mondor L, Maxwell CJ, Hogan DB, Bronskill SE, Campitelli MA, Seitz DP, Wodchis WP. The incremental health care costs of frailty among home care recipients with and without dementia in Ontario, Canada: a cohort study. Med Care. 2019;57:512–20.

    PubMed  Google Scholar 

  3. Clegg A, Hassan-Smith Z. Frailty and the endocrine system. Lancet Diabetes Endocrinol. 2018;6(9):743–52.

    CAS  PubMed  Google Scholar 

  4. Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, Sergi G, Isik AT, Manzato E, Maggi S, et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8.

    CAS  PubMed  Google Scholar 

  5. Soysal P, Isik AT, Carvalho AF, Fernandes BS, Solmi M, Schofield P, Veronese N, Stubbs B. Oxidative stress and frailty: a systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72.

    CAS  PubMed  Google Scholar 

  6. Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A. 2020;117:9483–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Y, Hao Q, Flaherty JH, Cao L, Zhou J, Su L, Shen Y, Dong B. Comparison of procalcitonin, a potentially new inflammatory biomarker of frailty, to interleukin-6 and C-reactive protein among older Chinese hospitalized patients. Aging Clin Exp Res. 2018;30:1459–64.

    PubMed  Google Scholar 

  8. Samson LD, Boots AMH, Verschuren WMM, Picavet HSJ, Engelfriet P, Buisman AM. Frailty is associated with elevated CRP trajectories and higher numbers of neutrophils and monocytes. Exp Gerontol. 2019;125:110674.

  9. Zaslavsky O, Walker RL, Crane PK, Gray SL, Larson EB. Glucose levels and risk of frailty. J Gerontol A Biol Sci Med Sci. 2016;71(9):1223–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Parvaneh S, Howe CL, Toosizadeh N, Honarvar B, Slepian MJ, Fain M, Mohler J, Najafi B. Regulation of cardiac autonomic nervous system control across frailty status: a systematic review. Gerontology. 2015;62:3.

    PubMed  Google Scholar 

  11. Abadir PM. The frail renin-angiotensin system. Clin Geriatr Med. 2011;27:53.

    PubMed  PubMed Central  Google Scholar 

  12. Sathyan S, Verghese J. Genetics of frailty: a longevity perspective. Transl Res. 2020;221:83–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sathyan S, Barzilai N, Atzmon G, Milman S, Ayers E, Verghese J. Genetic insights into frailty: association of 9p21-23 locus with frailty. Front Med. 2018;5:105.

    Google Scholar 

  14. Mekli K, Stevens A, Marshall AD, Arpawong TE, Phillips DF, Tampubolon G, Lee J, Prescott CA, Nazroo JY, Pendleton N. Frailty Index associates with GRIN2B in two representative samples from the United States and the United Kingdom. PLoS One. 2018;13(11):e0207824.

  15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Collins R. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:1001779.

    Google Scholar 

  16. Fisher GG, Ryan LH. Overview of the Health and Retirement Study and introduction to the Special Issue. Work Aging Retire. 2018;4:1–9.

    PubMed  Google Scholar 

  17. Atkins JL, Jylhävä J, Pedersen NL, Magnusson PK, Lu Y, Wang Y, Hägg S, Melzer D, Williams DM, Pilling LC. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell. 2021;20: e13459.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.

  19. Livshits G, Ni Lochlainn M, Malkin I, Bowyer R, Verdi S, Steves CJ, Williams FMK. Shared genetic influence on frailty and chronic widespread pain: a study from TwinsUK. Age Ageing. 2018;47:119–25.

    PubMed  Google Scholar 

  20. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health. 2018;3:e323–32.

    PubMed  PubMed Central  Google Scholar 

  22. Cigolle CT, Ofstedal MB, Tian Z, Blaum CS. Comparing models of frailty: the Health and Retirement Study. J Am Geriatr Soc. 2009;57:830–9.

    PubMed  Google Scholar 

  23. Op het Veld LPM, van Rossum E, Kempen GIJM, de Vet HCW, Hajema K, Beurskens AJHM. Fried phenotype of frailty: cross-sectional comparison of three frailty stages on various health domains. BMC Geriatr. 2015;15:77.

    PubMed  PubMed Central  Google Scholar 

  24. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Google Scholar 

  25. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, Chasman DI, Ridker PM, Neale BM, Berger B, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47:284–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, Anttila V, Xu H, Zang C, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    PubMed  PubMed Central  Google Scholar 

  29. Segrè AV, DIAGRAM Consortium, MAGIC investigators, Groop L, Mootha VK, Daly MJ, Altshuler D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 2010;6: e1001058.

    PubMed  PubMed Central  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu Q, Hu Y, Sun J, Cheng Y, Cheung K-H, Zhao H. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci Rep. 2015;5:10576.

    PubMed  PubMed Central  Google Scholar 

  32. Lu Q, Powles RL, Abdallah S, Ou D, Wang Q, Hu Y, Lu Y, Liu W, Li B, Mukherjee S, et al. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLoS Genet. 2017;13: e1006933.

    PubMed  PubMed Central  Google Scholar 

  33. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11: e1004219.

    PubMed  PubMed Central  Google Scholar 

  34. Consortium, T.G., and The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.

    Google Scholar 

  35. Watanabe K, Taskesen E, Bochoven Av, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1–11.

    CAS  Google Scholar 

  36. Lu Q, Li B, Ou D, Erlendsdottir M, Powles RL, Jiang T, Hu Y, Chang D, Jin C, Dai W, et al. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am J Hum Genet. 2017;101:939.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye Y, Yang H, Wang Y, Zhao H. A comprehensive genetic and epidemiological association analysis of vitamin D with common diseases/traits in the UK Biobank. Genet Epidemiol. 2021;45:24–35.

    PubMed  Google Scholar 

  38. Nagtegaal AP, Broer L, Zilhao NR, Jakobsdottir J, Bishop CE, Brumat M, Christiansen MW, Cocca M, Gao Y, Heard-Costa NL, et al. Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. Sci Rep. 2019;9:15192.

    PubMed  PubMed Central  Google Scholar 

  39. Kamil RJ, Li L, Lin FR. Association between hearing impairment and frailty in older adults. J Am Geriatr Soc. 2014;62:1186–8.

    PubMed  PubMed Central  Google Scholar 

  40. Bowden J, Smith GD, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304.

    PubMed  PubMed Central  Google Scholar 

  41. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    PubMed  PubMed Central  Google Scholar 

  43. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    PubMed  PubMed Central  Google Scholar 

  44. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

    PubMed  PubMed Central  Google Scholar 

  45. Ramsay SE, Arianayagam DS, Whincup PH, Lennon LT, Cryer J, Papacosta AO, Iliffe S, Wannamethee SG. Cardiovascular risk profile and frailty in a population-based study of older British men. Heart. 2015;101:616–22.

    CAS  PubMed  Google Scholar 

  46. Handforth C, Clegg A, Young C, Simpkins S, Seymour MT, Selby PJ, Young J. The prevalence and outcomes of frailty in older cancer patients: a systematic review. Ann Oncol. 2015;26:1091–101.

    CAS  PubMed  Google Scholar 

  47. Chen C, Winterstein AG, Fillingim RB, Wei Y-J. Body weight, frailty, and chronic pain in older adults: a cross-sectional study. BMC Geriatr. 2019;19:143.

    PubMed  PubMed Central  Google Scholar 

  48. Melzer D, Ferrucci L. Genetics and mechanisms of human aging and frailty. Innov Aging. 2019;3:S221–S221.

    PubMed Central  Google Scholar 

  49. Zhang Y, Wang S-S, Tao L, Pang L-J, Zou H, Liang W-H, Liu Z, Guo S-L, Jiang J-F, Zhang W-J, et al. Overexpression of MAP3K3 promotes tumour growth through activation of the NF-κB signalling pathway in ovarian carcinoma. Sci Rep. 2019;9:8401.

    PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Meng X, Chen Y, Leng SX, Zhang H. The biology of aging and cancer: frailty, inflammation, and immunity. Cancer J. 2017;23:201–5.

    PubMed  Google Scholar 

  51. Kant IMJ, de Bresser J, van Montfort SJT, Aarts E, Verlaan J-J, Zacharias N, Winterer G, Spies C, Slooter AJC, Hendrikse J, et al. The association between brain volume, cortical brain infarcts, and physical frailty. Neurobiol Aging. 2018;70:247–53.

    PubMed  PubMed Central  Google Scholar 

  52. Sargent L, Nalls M, Starkweather A, Hobgood S, Thompson H, Amella EJ, Singleton A. Shared biological pathways for frailty and cognitive impairment: a systematic review. Ageing Res Rev. 2018;47:149–58.

    PubMed  PubMed Central  Google Scholar 

  53. Petermann-Rocha F, Lyall DM, Gray SR, Esteban-Cornejo I, Quinn TJ, Ho FK, Pell JP, Celis-Morales C. Associations between physical frailty and dementia incidence: a prospective study from UK Biobank. Lancet Healthy Longev. 2020;1:e58–68.

    PubMed  Google Scholar 

  54. Fontes AP, Neri AL. Resilience in aging: literature review. Cien Saude Colet. 2015;20:1475–95.

    PubMed  Google Scholar 

  55. Afilalo J, Lauck S, Kim DH, Lefèvre T, Piazza N, Lachapelle K, Martucci G, Lamy A, Labinaz M, Peterson MD, et al. Frailty in older adults undergoing aortic valve replacement. J Am Coll Cardiol. 2017;70:689–700.

    PubMed  Google Scholar 

  56. Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R, Xue QL, Walston JD, Kasper JD. Frailty in older adults: a nationally representative profile in the United States. J Gerontol A Biol Sci Med Sci. 2015;70(11):1427–34.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank many GWAS consortia for making their GWAS summary data publicly accessible. We conducted the research using the UK Biobank resource under an approved data request (ref: 34763) and the HRS resource approved via dbGap.

Funding

GJF is supported by the National Institutes of Health (K76AG059992, R03NS112859 and P30AG021342), the American Heart Association (18IDDG34280056 and 817874) and the Neurocritical Care Society Research Fellowship. YY and HZ were supported in part by the National Institutes of Health (R01 GM134005) and National Science Foundation (DMS 1902903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Zhao or Guido J. Falcone.

Ethics declarations

Web resources

Finngen, https://www.finngen.fi/en/access_results

FUMA, https://fuma.ctglab.nl

GNOVA, https://github.com/xtonyjiang/GNOVA

HRS, http://www.nia.nih.gov/research/resource/health-and-retirement-study-hrs

LDhub, http://ldsc.broadinstitute.org/ldhub/

LDSC, https://github.com/bulik/ldsc

MAGENTA, https://software.broadinstitute.org/mpg/magenta/

PLINK, https://www.cog-genomics.org/plink/

PRScs, https://github.com/getian107/PRScs

UKBB, https://www.ukbiobank.ac.uk

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hongyu Zhao and Guido J. Falcone jointly supervised this work

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 871 KB)

Supplementary file2 (XLSX 2930 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Noche, R.B., Szejko, N. et al. A genome-wide association study of frailty identifies significant genetic correlation with neuropsychiatric, cardiovascular, and inflammation pathways. GeroScience 45, 2511–2523 (2023). https://doi.org/10.1007/s11357-023-00771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00771-z

Keywords

Navigation