Skip to main content

Advertisement

Log in

Familial aggregation of the aging process: biological age measured in young adult offspring as a predictor of parental mortality

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract 

Measures of biological age (BA) integrate information across organ systems to quantify “biological aging,” i.e., inter-individual differences in aging-related health decline. While longevity and lifespan aggregate in families, reflecting transmission of genes and environments across generations, little is known about intergenerational continuity of biological aging or the extent to which this continuity may be modified by environmental factors. Using data from the Jerusalem Perinatal Study (JPS), we tested if differences in offspring BA were related to mortality in their parents. We measured BA using biomarker data collected from 1473 offspring during clinical exams in 2007–2009, at age 32 ± 1.1. Parental mortality was obtained from population registry data for the years 2004–2016. We fitted parametric survival models to investigate the associations between offspring BA and parental all-cause and cause-specific mortality. We explored potential differences in these relationships by socioeconomic position (SEP) and offspring sex. Participants’ BAs widely varied (SD = 6.95). Among those measured to be biologically older, parents had increased all-cause mortality (HR = 1.10, 95% CI: 1.08, 1.13), diabetes mortality (HR = 1.19, 95% CI: 1.08, 1.30), and cancer mortality (HR = 1.07, 95% CI: 1.02, 1.13). The association with all-cause mortality was stronger for families with low compared with high SEP (Pinteraction = 0.04) and for daughters as compared to sons (Pinteraction < 0.001). Using a clinical-biomarker-based BA estimate, observable by young adulthood prior to the onset of aging-related diseases, we demonstrate intergenerational continuity of the aging process. Furthermore, variation in this familial aggregation according to household socioeconomic position (SEP) at offspring birth and between families of sons and daughters proposes that the environment alters individuals’ aging trajectory set by their parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380:2163–96. https://doi.org/10.1016/S0140-6736(12)61729-2.

    Article  Google Scholar 

  2. Baker GT, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988;23:223–39. https://doi.org/10.1016/0531-5565(88)90025-3.

    Article  Google Scholar 

  3. Benjamin H. Biologic versus chronologic age. J Gerontol. 1947;2:217–27. https://doi.org/10.1093/geronj/2.3.217.

    Article  CAS  Google Scholar 

  4. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  Google Scholar 

  5. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–13. https://doi.org/10.1016/j.cell.2014.10.039.

    Article  CAS  Google Scholar 

  6. Hochschild R. Improving the precision of biological age determinations. Part 1: a new approach to calculating biological age. Exp Gerontol. 1989;24:289–300. https://doi.org/10.1016/0531-5565(89)90002-8.

    Article  CAS  Google Scholar 

  7. Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. Mech Ageing Dev. 1988;46:1–18. https://doi.org/10.1016/0047-6374(88)90109-1.

    Article  CAS  Google Scholar 

  8. Jee H, Park J. Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. Arch Gerontol Geriatr. 2017;70:84–91. https://doi.org/10.1016/j.archger.2017.01.005.

    Article  Google Scholar 

  9. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84. https://doi.org/10.1038/s41576-018-0004-3.

    Article  CAS  Google Scholar 

  10. Li Q, Wang S, Milot E, Bergeron P, Ferrucci L, Fried LP, et al. Homeostatic dysregulation proceeds in parallel in multiple physiological systems. Aging Cell. 2015;14:1103–12. https://doi.org/10.1111/acel.12402.

    Article  CAS  Google Scholar 

  11. Crimmins EM, Thyagarajan B, Kim JK, Weir D, Faul J. Quest for a summary measure of biological age: the health and retirement study. Geroscience. 2021;43:395–408. https://doi.org/10.1007/s11357-021-00325-1.

    Article  Google Scholar 

  12. Drewelies J, Hueluer G, Duezel S, Vetter VM, Pawelec G, Steinhagen-Thiessen E, et al. Using blood test parameters to define biological age among older adults: association with morbidity and mortality independent of chronological age validated in two separate birth cohorts. Geroscience. 2022. https://doi.org/10.1007/s11357-022-00662-9.

    Article  Google Scholar 

  13. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127:240–8. https://doi.org/10.1016/j.mad.2005.10.004.

    Article  Google Scholar 

  14. Levine ME, Crimmins EM. A comparison of methods for assessing mortality risk. Am J Hum Biol. 2014;26:768–76. https://doi.org/10.1002/ajhb.22595.

    Article  Google Scholar 

  15. Parker DC, Bartlett BN, Cohen HJ, Fillenbaum G, Huebner JL, Kraus VB, et al. Association of blood chemistry quantifications of biological aging with disability and mortality in older adults. J Gerontol: Series A. 2020;75:1671–9. https://doi.org/10.1093/gerona/glz219.

    Article  Google Scholar 

  16. Hastings WJ, Shalev I, Belsky DW. Comparability of biological aging measures in the National Health and Nutrition Examination Study, 1999–2002. Psychoneuroendocrinology. 2019;106:171–8. https://doi.org/10.1016/j.psyneuen.2019.03.012.

    Article  Google Scholar 

  17. Murabito JM, Zhao Q, Larson MG, Rong J, Lin H, Benjamin EJ, et al. Measures of biologic age in a community sample predict mortality and age-related disease: the Framingham offspring study. J Gerontol: Series A. 2018;73:757–62. https://doi.org/10.1093/gerona/glx144.

    Article  Google Scholar 

  18. Graf GH, Crowe CL, Kothari M, Kwon D, Manly JJ, Turney IC, et al. Testing Black-White disparities in biological aging among older adults in the United States: analysis of DNA-methylation and blood-chemistry methods. Am J Epidemiol. 2022;191:613–25. https://doi.org/10.1093/aje/kwab281.

    Article  Google Scholar 

  19. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci. 2015;112:E4104–10. https://doi.org/10.1073/pnas.1506264112.

    Article  CAS  Google Scholar 

  20. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2017. https://doi.org/10.1093/aje/kwx346.

    Article  Google Scholar 

  21. Pedersen JK, Elo IT, Schupf N, Perls TT, Stallard E, Yashin AI, et al. The survival of spouses marrying into longevity-enriched families. J Gerontol A Biol Sci Med Sci. 2017;72:109–14. https://doi.org/10.1093/gerona/glw159.

    Article  Google Scholar 

  22. Christensen K, Wojczynski MK, Pedersen JK, Larsen LA, Kløjgaard S, Skytthe A, et al. Mechanisms underlying familial aggregation of exceptional health and survival: a three‐generation cohort study. Aging Cell 2020;19. https://doi.org/10.1111/acel.13228.

  23. van den Berg N, Rodríguez-Girondo M, van Dijk IK, Mourits RJ, Mandemakers K, Janssens AAPO, et al. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun. 2019;10:35. https://doi.org/10.1038/s41467-018-07925-0.

    Article  CAS  Google Scholar 

  24. Sebastiani P, Nussbaum L, Andersen SL, Black MJ, Perls TT. Increasing sibling relative risk of survival to older and older ages and the importance of precise definitions of “Aging”, “Life Span”, and “Longevity.” J Gerontol A Biol Sci Med Sci. 2016;71:340–6. https://doi.org/10.1093/gerona/glv020.

    Article  Google Scholar 

  25. van den Berg N, Beekman M, Smith KR, Janssens A, Slagboom PE. Historical demography and longevity genetics: back to the future. Ageing Res Rev. 2017;38:28–39. https://doi.org/10.1016/j.arr.2017.06.005.

    Article  Google Scholar 

  26. Kim S, Welsh DA, Cherry KE, Myers L, Jazwinski SM. Association of healthy aging with parental longevity. Age (Omaha). 2013;35:1975–82. https://doi.org/10.1007/s11357-012-9472-0.

    Article  Google Scholar 

  27. Lawrence GM, Siscovick DS, Calderon-Margalit R, Enquobahrie DA, Granot-Hershkovitz E, Harlap S, et al. Cohort profile: the Jerusalem perinatal family follow-up study. Int J Epidemiol. 2016;45:343–52. https://doi.org/10.1093/ije/dyv120.

    Article  Google Scholar 

  28. Harlap S, Davies AM, Deutsch L, Calderon-Margalit R, Manor O, Paltiel O, et al. The Jerusalem Perinatal Study cohort, 1964?2005: methods and a review of the main results. Paediatr Perinat Epidemiol. 2007;21:256–73. https://doi.org/10.1111/j.1365-3016.2007.00799.x.

    Article  Google Scholar 

  29. Kwon D, Belsky DW. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience. 2021;43:2795–808. https://doi.org/10.1007/s11357-021-00480-5.

    Article  CAS  Google Scholar 

  30. Nelson PG, Promislow DEL, Masel J. Biomarkers for aging identified in cross-sectional studies tend to be non-causative. The Journals of Gerontology: Series A. 2020;75:466–72. https://doi.org/10.1093/gerona/glz174.

    Article  Google Scholar 

  31. Hochner H, Friedlander Y, Calderon-Margalit R, Meiner V, Sagy Y, Avgil-Tsadok M, et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors. Circulation. 2012;125:1381–9. https://doi.org/10.1161/CIRCULATIONAHA.111.070060.

    Article  CAS  Google Scholar 

  32. Dior UP, Lawrence GM, Sitlani C, Enquobahrie D, Manor O, Siscovick DS, et al. Parental smoking during pregnancy and offspring cardio-metabolic risk factors at ages 17 and 32. Atherosclerosis. 2014;235:430–7. https://doi.org/10.1016/j.atherosclerosis.2014.05.937.

    Article  CAS  Google Scholar 

  33. Glasser M. Is longevity inherited? J Chronic Dis. 1981;34:439–44. https://doi.org/10.1016/0021-9681(81)90003-5.

    Article  CAS  Google Scholar 

  34. Hjelmborg JvB, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, et al. Genetic influence on human lifespan and longevity. Hum Genet. 2006;119:312–21. https://doi.org/10.1007/s00439-006-0144-y.

    Article  Google Scholar 

  35. Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, et al. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci. 2002;99:8442–7. https://doi.org/10.1073/pnas.122587599.

    Article  CAS  Google Scholar 

  36. Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, et al. Health and function of participants in the Long Life Family Study: a comparison with other cohorts. Aging. 2011;3:63–76. https://doi.org/10.18632/aging.100242.

    Article  Google Scholar 

  37. Terry DF. Characteristics of Framingham offspring participants with long-lived parents. Arch Intern Med. 2007;167:438. https://doi.org/10.1001/archinte.167.5.438.

    Article  Google Scholar 

  38. Reed T, Carmelli D, Robinson TS, Rinehart SA, Williams CJ. More favorable midlife cardiovascular risk factor levels in male twins and mortality after 25 years of follow-up is related to longevity of their parents. J Gerontol A Biol Sci Med Sci. 2003;58:M367–71. https://doi.org/10.1093/gerona/58.4.M367.

    Article  Google Scholar 

  39. Liu Z. Development and validation of 2 composite aging measures using routine clinical biomarkers in the Chinese population: analyses from 2 prospective cohort studies. The Journals of Gerontology: Series A. 2021;76:1627–32. https://doi.org/10.1093/gerona/glaa238.

    Article  CAS  Google Scholar 

  40. Levine ME, Crimmins EM. Evidence of accelerated aging among African Americans and its implications for mortality. Soc Sci Med. 2014;118:27–32. https://doi.org/10.1016/j.socscimed.2014.07.022.

    Article  CAS  Google Scholar 

  41. Roberts CB, Couper DJ, Chang PP, James SA, Rosamond WD, Heiss G. Influence of life-course socioeconomic position on incident heart failure in Blacks and Whites: the atherosclerosis risk in communities study. Am J Epidemiol. 2010;172:717–27. https://doi.org/10.1093/aje/kwq193.

    Article  Google Scholar 

  42. Maty SC, James SA, Kaplan GA. Life-course socioeconomic position and incidence of diabetes mellitus among Blacks and Whites: the Alameda County study, 1965–1999. Am J Public Health. 2010;100:137–45. https://doi.org/10.2105/AJPH.2008.133892.

    Article  Google Scholar 

  43. Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16:91–104. https://doi.org/10.1016/j.annepidem.2005.06.053.

    Article  Google Scholar 

  44. Smith BT, Lynch JW, Fox CS, Harper S, Abrahamowicz M, Almeida ND, et al. Life-course socioeconomic position and type 2 diabetes mellitus. Am J Epidemiol. 2011;173:438–47. https://doi.org/10.1093/aje/kwq379.

    Article  Google Scholar 

  45. Gebreab SY, Diez Roux A v., Brenner AB, Hickson DA, Sims M, Subramanyam M, et al. The impact of lifecourse socioeconomic position on cardiovascular disease events in African Americans: the Jackson Heart Study. J Am Heart Assoc 2015;4. https://doi.org/10.1161/JAHA.114.001553.

  46. Beckles GL, McKeever Bullard K, Saydah S, Imperatore G, Loustalot F, Correa A. Life course socioeconomic position, allostatic load, and incidence of type 2 diabetes among African American adults: the Jackson Heart Study, 2000–04 to 2012. Ethn Dis 2019;29:39–46. https://doi.org/10.18865/ed.29.1.39.

  47. Hüls A, Wright MN, Bogl LH, Kaprio J, Lissner L, Molnár D, et al. Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents. Int J Obes. 2021;45:1321–30. https://doi.org/10.1038/s41366-021-00795-5.

    Article  CAS  Google Scholar 

  48. Moorman SM, Carr K, Greenfield EA. Childhood socioeconomic status and genetic risk for poorer cognition in later life. Soc Sci Med. 2018;212:219–26. https://doi.org/10.1016/j.socscimed.2018.07.025.

    Article  Google Scholar 

  49. Grotto I, Huerta M, Kark JD, Shpilberg O, Meyerovitch J. Relation of parental history of coronary heart disease to obesity in young adults. Int J Obes. 2003;27:362–8. https://doi.org/10.1038/sj.ijo.802242.

    Article  CAS  Google Scholar 

  50. Dolton P, Xiao M. The intergenerational transmission of body mass index across countries. Econ Hum Biol. 2017;24:140–52. https://doi.org/10.1016/j.ehb.2016.11.005.

    Article  Google Scholar 

  51. Friedlander Y, Bucher KD, Namboodiri KK, Heiss G, Kark JD, Tyroler HA, Eisenberg S, Stein Y, Rifkind BM. Parent-offspring aggregation of plasma lipids in selected populations in north america and Israel: the lipid research clinics prevalence study. Am J Epidemiol. 1987;126(2):268–79. https://doi.org/10.1093/aje/126.2.268.

    Article  CAS  Google Scholar 

  52. Friedlander Y, Kark JD, Bar-On H. Family resemblance for fasting blood glucose: the Jerusalem Lipid Research Clinic. Clin Genet. 1987;32:222–34. https://doi.org/10.1111/j.1399-0004.1987.tb03305.x.

    Article  CAS  Google Scholar 

  53. Berentzen NE, Wijga AH, van Rossem L, Koppelman GH, van Nieuwenhuizen B, Gehring U, et al. Family history of myocardial infarction, stroke and diabetes and cardiometabolic markers in children. Diabetologia. 2016;59:1666–74. https://doi.org/10.1007/s00125-016-3988-2.

    Article  CAS  Google Scholar 

  54. Bao W, Srinivasan SR, Wattigney WA, Berenson GS. The relation of parental cardiovascular disease to risk factors in children and young adults. Circulation. 1995;91:365–71. https://doi.org/10.1161/01.CIR.91.2.365.

    Article  CAS  Google Scholar 

  55. Vik KL, Romundstad P, Nilsen T il. Tracking of cardiovascular risk factors across generations: family linkage within the population-based HUNT study, Norway n.d. https://doi.org/10.1136/jech.

  56. Classen TJ. Measures of the intergenerational transmission of body mass index between mothers and their children in the United States, 1981–2004. Econ Hum Biol. 2010;8:30–43. https://doi.org/10.1016/j.ehb.2009.11.002.

    Article  Google Scholar 

  57. Carslake D, Davey Smith G, Gunnell D, Davies N, Nilsen TIL, Romundstad P. Confounding by ill health in the observed association between BMI and mortality: evidence from the HUNT Study using offspring BMI as an instrument. Int J Epidemiol. 2018;47:760–70. https://doi.org/10.1093/ije/dyx246.

    Article  Google Scholar 

  58. Wade KH, Carslake D, Tynelius P, Davey Smith G, Martin RM. Variation of all-cause and cause-specific mortality with body mass index in one million Swedish parent-son pairs: an instrumental variable analysis. PLoS Med. 2019;16:e1002868. https://doi.org/10.1371/journal.pmed.1002868.

    Article  Google Scholar 

  59. Carslake D, Fraser A, May MT, Palmer T, Silventoinen K, Tynelius P, et al. Associations of mortality with own blood pressure using son’s blood pressure as an instrumental variable. Sci Rep. 2019;9:8986. https://doi.org/10.1038/s41598-019-45391-w.

    Article  CAS  Google Scholar 

  60. Mitnitski A, Rockwood K. Biological age revisited. J Gerontol A Biol Sci Med Sci. 2014;69A:295–6. https://doi.org/10.1093/gerona/glt137.

    Article  Google Scholar 

Download references

Funding

The study was supported by NIH research grant no. R01HL088884, the Israeli Science Foundation grant no. 1065/16, and the Israel National Institute for Health Policy research grant no. 2018/202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagit Hochner.

Ethics declarations

Declarations

This study was approved by the Institutional Review Board of the Hadassah-Hebrew University Medical Center (#10–01.04.05) and participants provided informed consent for physical examination.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 373 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, I., Belsky, D.W., Israel, S. et al. Familial aggregation of the aging process: biological age measured in young adult offspring as a predictor of parental mortality. GeroScience 45, 901–913 (2023). https://doi.org/10.1007/s11357-022-00687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00687-0

Keywords

Navigation