Skip to main content

How size and genetic diversity shape lifespan across breeds of purebred dogs

Abstract

While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs — the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Michell AR. Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease. Vet Rec. 1999;145:625–529.

    CAS  PubMed  Article  Google Scholar 

  2. Proschowsky HF, Rugbjerg H, Ersbøll AK. Mortality of purebred and mixed-breed dogs in Denmark. Prev Vet Med. 2003;58:63–74.

    PubMed  Article  Google Scholar 

  3. Jimenez AG. Physiological underpinnings in life-history trade-offs in man’s most popular selection experiment: the dog. J Comp Physiol B. 2016;186:813–27.

    PubMed  Article  Google Scholar 

  4. Creevy KE, Austad SN, Hoffman JM, O’Neill DG, Promislow DEL. The companion dog as a model for the longevity dividend. Cold Spring Harb Perspect Med. 2016;6:a026633.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Hoffman JM, Creevy KE, Franks A, O’Neill DG, Promislow DEL. The companion dog as a model for human aging and mortality. Aging Cell. 2018;17:e12737.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Creevy KE, Akey JM, Kaeberlein M, Promislow DEL, The Dog Aging Project Consortium. The Dog Aging Project: An open science study of aging in companion dogs. Nature. 2022;in press.

  7. Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontological research. J Gerontol. 1997;52A:B171–8.

    Article  Google Scholar 

  8. Galis F, Van Der Sluijs I, Van Dooren TJM, Metz JAJ, Nussbaumer M. Do large dogs die young? J Exp Zoolog B Mol Dev Evol. 2007;308B:119–26.

    Article  Google Scholar 

  9. Kraus C, Pavard S, Promislow DEL. The size–lifespan trade-off decomposed: why large dogs die young. Am Nat. 2013;181:492–505.

    PubMed  Article  Google Scholar 

  10. Adams VJ, Evans KM, Sampson J, Wood JLN. Methods and mortality results of a health survey of purebred dogs in the UK. J Small Anim Pract. 2010;51:512–24.

    CAS  PubMed  Article  Google Scholar 

  11. Yordy J, Kraus C, Hayward JJ, White ME, Shannon LM, Creevy KE, et al. Body size, inbreeding, and lifespan in domestic dogs. Conserv Genet. 2020;21:137–48.

    CAS  PubMed  Article  Google Scholar 

  12. Urfer SR, Kaeberlein M, Promislow DEL, Creevy KE. Lifespan of companion dogs seen in three independent primary care veterinary clinics in the United States. Canine Med Genet. 2020;7:7.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Leroy G, Phocas F, Hedan B, Verrier E, Rognon X. Inbreeding impact on litter size and survival in selected canine breeds. Vet J. 2015;203:74–8.

    PubMed  Article  Google Scholar 

  14. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.

    CAS  PubMed  Article  Google Scholar 

  15. Parker HG, Shearin AL, Ostrander EA. Man’s best friend becomes biology’s best in show: genome analyses in the domestic dog. Annu Rev Genet. 2010;44:309–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, et al. Genetic structure of the purebred domestic dog. 2004;304:6.

    Google Scholar 

  17. Dreger DL, Rimbault M, Davis BW, Bhatnagar A, Parker HG, Ostrander EA. Whole genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic trait mapping. Dis Model Mech. 2016;dmm.027037.

  18. Sams AJ, Boyko AR. Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs. G3 GenesGenomesGenetics. 2019;9:117–23.

    CAS  Article  Google Scholar 

  19. Mooney JA, Yohannes A, Lohmueller KE. The impact of identity by descent on fitness and disease in dogs. Proc Natl Acad Sci. 2021;118:e2019116118.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Tournebize R, Chu G, Moorjani P. Reconstructing the history of founder events using genome-wide patterns of allele sharing across individuals. Lohmueller KE editor PLOS Genet. 2022;18:e1010243.

    CAS  Article  Google Scholar 

  21. Keller L, Waller D. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.

    Article  Google Scholar 

  22. Leroy G. Inbreeding depression in livestock species: review and meta-analysis. Anim Genet. 2014;45:618–28.

    CAS  PubMed  Article  Google Scholar 

  23. Boakes EH, Wang J, Amos W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity. 2007;98:172–82.

    CAS  PubMed  Article  Google Scholar 

  24. Hasselgren M, Norén K. Inbreeding in natural mammal populations: historical perspectives and future challenges. Mammal Rev. 2019;49:369–83.

    Article  Google Scholar 

  25. Hedrick PW, Kalinowski ST. Inbreeding depression in conservation biology. Annu Rev Ecol Syst. 2000;3:139–62.

    Article  Google Scholar 

  26. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–96.

    CAS  PubMed  Article  Google Scholar 

  27. Bijlsma Bundgaard, Boerema. Does inbreeding affect the extinction risk of small populations? predictions from Drosophila. J Evol Biol. 2000;13:502–14.

    Article  Google Scholar 

  28. O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv. 2006;133:42–51.

    Article  Google Scholar 

  29. Frankham R. Genetics and extinction. Biol Conserv. 2005;126:131–40.

    Article  Google Scholar 

  30. Inoue M, Kwan NCL, Sugiura K. Estimating the life expectancy of companion dogs in Japan using pet cemetery data. J Vet Med Sci. 2018;80:1153–8.

    PubMed  PubMed Central  Article  Google Scholar 

  31. O’Neill DG, Church DB, McGreevy PD, Thomson PC, Brodbelt DC. Longevity and mortality of owned dogs in England. Vet J. 2013;198:638–43.

    PubMed  Article  Google Scholar 

  32. Bannasch D, Famula T, Donner J, Anderson H, Honkanen L, Batcher K, et al. The effect of inbreeding, body size and morphology on health in dog breeds. Canine Med Genet. 2021;8:12.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Marsden CD, Ortega-Del Vecchyo D, O’Brien DP, Taylor JF, Ramirez O, Vilà C, et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci. 2016;113:152–7.

    CAS  PubMed  Article  Google Scholar 

  34. Urfer SR. Right censored data (‘cohort bias’) in veterinary life span studies. Vet Rec. 2008;163:457–8.

    CAS  PubMed  Article  Google Scholar 

  35. O’Neill DG, Packer RMA, Lobb M, Church DB, Brodbelt DC, Pegram C. Demography and commonly recorded clinical conditions of Chihuahuas under primary veterinary care in the UK in 2016. BMC Vet Res. 2020;16:42.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Gladyshev TV, Gladyshev VN. A disease or not a disease? Aging as a pathology. Trends Mol Med. 2016;22:995–6.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Dobson JM. Breed-predispositions to cancer in pedigree dogs. ISRN Vet Sci. 2013;2013:1–23.

    Article  CAS  Google Scholar 

  38. Paoloni M, Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer. 2008;8:147–56.

    CAS  PubMed  Article  Google Scholar 

  39. Alvarez CE. Naturally occurring cancers in dogs: insights for translational genetics and medicine. ILAR J. 2014;55:16–45.

    CAS  PubMed  Article  Google Scholar 

  40. Ostrander EA, Dreger DL, Evans JM. Canine cancer genomics: lessons for canine and human health. Annu Rev Anim Biosci. 2019;7:449–72.

    CAS  PubMed  Article  Google Scholar 

  41. Davis BW, Ostrander EA. Domestic dogs and cancer research: a breed-based genomics approach. ILAR J. 2014;55:59–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Gardner HL, Fenger JM, London CA. Dogs as a model for cancer. Annu Rev Anim Biosci. 2016;4:199–222.

    CAS  PubMed  Article  Google Scholar 

  43. Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol Med. 2011;17:380–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc B Biol Sci. 2015;370:20140231.

    Article  Google Scholar 

  45. Fleming JM, Creevy KE, Promislow DEL. Mortality in North American dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death: mortality of dogs in North America. J Vet Intern Med. 2011;25:187–98.

    CAS  PubMed  Article  Google Scholar 

  46. Dorn CR, Taylor DON, Schneider R, Hibbard HH, Klauber MR. Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J Natl Cancer Inst. 1968;40:307–18.

    CAS  PubMed  Google Scholar 

  47. Vascellari M, Baioni E, Ru G, Carminato A, Mutinelli F. Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats. BMC Vet Res. 2009;5:39.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Bellumori TP, Famula TR, Bannasch DL, Belanger JM, Oberbauer AM. Prevalence of inherited disorders among mixed-breed and purebred dogs: 27,254 cases (1995–2010). J Am Vet Med Assoc. 2013;242:1549–55.

    PubMed  Article  Google Scholar 

  49. Parker HG, Dreger DL, Rimbault M, Davis BW, Mullen AB, Carpintero-Ramirez G, et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 2017;19:697–708.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Faraway JJ. Linear Models with R. 2nd ed. Chapman & Hall; 2015.

  52. Jimenez AG, Downs CJ. Untangling life span and body mass discrepancies in canids: phylogenetic comparison of oxidative stress in blood from domestic dogs and wild canids. Am J Physiol-Regul Integr Comp Physiol. 2020;319:R203–10.

    CAS  PubMed  Article  Google Scholar 

  53. Watowich MM, MacLean EL, Hare B, Call J, Kaminski J, Miklósi Á, et al. Age influences domestic dog cognitive performance independent of average breed lifespan. Anim Cogn. 2020;23:795–805.

    PubMed  PubMed Central  Article  Google Scholar 

  54. MacLean EL, Snyder-Mackler N, vonHoldt BM, Serpell JA. Highly heritable and functionally relevant breed differences in dog behaviour. Proc R Soc B Biol Sci. 2019;286:20190716.

    CAS  Article  Google Scholar 

  55. Akdemir D, Godfrey OU. 2015 EMMREML: fitting mixed models with known covariance structures. R Package Version 31 HttpsCRANR-Proj

  56. Bürkner P-C. An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80:1–28.

    Article  Google Scholar 

  57. Bürkner P-C. Advanced Bayesian multilevel modeling with the R Package brms. R J. 2018;10:395–411.

    Article  Google Scholar 

  58. R Core Team. R: a language and environment for statistical computing. R Found Stat Comput Vienna Austria URL HttpswwwR-Proj [Internet]. 2020; Available from: https://www.R-project.org/. Accessed Dec 2020.

  59. Long JA. Jtools: analysis and presentation of social scientific data. R Package Version 2020; 210 URL Httpscranr-Proj

  60. Teng KT. Life tables of annual life expectancy and mortality for companion dogs in the United Kingdom. Sci Rep. 2022 ;11

  61. O’Neill DG, Baral L, Church DB, Brodbelt DC, Packer RMA. Demography and disorders of the French Bulldog population under primary veterinary care in the UK in 2013. Canine Genet Epidemiol. 2018;5:3.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Greer KA, Canterberry SC, Murphy KE. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci. 2007;82:208–14.

    PubMed  Article  Google Scholar 

  63. Tian X, Seluanov A, Gorbunova V. Molecular mechanisms determining lifespan in short- and long-lived species. Trends Endocrinol Metab. 2017;28:722–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Eigenmann JE, Patterson DF, Froesch ER. Body size parallels insulin-like growth factor I levels but not growth hormone secretory capacity. Acta Endocrinol (Copenh). 1984;106:448–53.

    CAS  PubMed  Article  Google Scholar 

  65. Eigenmann JE, Amador A, Patterson DF. Insulin-like growth factor I levels in proportionate dogs, chondrodystrophic dogs and in giant dogs. Acta Endocrinol (Copenh). 1988;118:105–8.

    CAS  PubMed  Article  Google Scholar 

  66. Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. Age. 2011;33:475–83.

    CAS  PubMed  Article  Google Scholar 

  67. Jimenez AG, Winward J, Beattie U, Cipolli W. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. Ling F editor PLOS ONE. 2018;13:e0195832.

    Article  CAS  Google Scholar 

  68. Nicholatos JW, Robinette TM, Tata SVP, Yordy JD, Francisco AB, Platov M, et al. Cellular energetics and mitochondrial uncoupling in canine aging. GeroScience. 2019;41:229–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Hoffman JM, Kiklevich JV, Austad M, Tran V, Jones DP, Royal A, et al. Tryptophan metabolism is differently regulated between large and small dogs. GeroScience. 2020;42:881–96.

    PubMed  Article  Google Scholar 

  70. Jimenez AG. The physiological conundrum that is the domestic dog. Integr Comp  2021; Biol.icab005

  71. Urfer SR. Beyond inbreeding depression? A case study of the Irish Wolfhound. J Vet Behav. 2011;6:99.

    PubMed  PubMed Central  Google Scholar 

  72. Lewis TW, Wiles BM, Llewellyn-Zaidi AM, Evans KM, O’Neill DG. Longevity and mortality in Kennel Club registered dog breeds in the UK in 2014. Canine Genet Epidemiol. 2018;5:10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Blanckenhorn WU. The evolution of body size: what keeps organisms small? Q Rev Biol. 2000;75:385–407.

    CAS  PubMed  Article  Google Scholar 

  74. Metcalfe N. Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol. 2003;38:935–40.

    PubMed  Article  Google Scholar 

  75. Sargan DR. IDID: Inherited Diseases in Dogs: web-based information for canine inherited disease genetics. Mamm Genome. 2004;15:503–6.

    CAS  PubMed  Article  Google Scholar 

  76. Karlsson EK, Lindblad-Toh K. Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet. 2008;9:713–25.

    CAS  PubMed  Article  Google Scholar 

  77. Donner J, Anderson H, Davison S, Hughes AM, Bouirmane J, Lindqvist J, et al. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. Leeb T editor PLOS Genet. 2018;14:e1007361.

    Article  CAS  Google Scholar 

  78. Wallis LJ, Szabó D, Erdélyi-Belle B, Kubinyi E. Demographic change across the lifespan of pet dogs and their impact on health status. Front Vet Sci. 2018;5:200.

    PubMed  PubMed Central  Article  Google Scholar 

  79. Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci. 2003;58:M232–7.

    Article  Google Scholar 

  80. Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome. 2016;27:279–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Guy MK, Page RL, Jensen WA, Olson PN, Haworth JD, Searfoss EE, et al. The Golden Retriever Lifetime Study: establishing an observational cohort study with translational relevance for human health. Philos Trans R Soc B Biol Sci. 2015;370:20140230.

    Article  Google Scholar 

  82. de Magalhães JP. How ageing processes influence cancer. Nat Rev Cancer. 2013;13:357–65.

    PubMed  Article  CAS  Google Scholar 

  83. Doherty A, Lopes I, Ford CT, Monaco G, Guest P, de Magalhães JP. A scan for genes associated with cancer mortality and longevity in pedigree dog breeds. Mamm Genome. 2020;31:215–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol. 2011;164:485–9.

    CAS  PubMed  Article  Google Scholar 

  85. Egenvall A, Bonnett BN, Hedhammar Å, Olson P. Mortality in over 350,000 insured Swedish dogs from 1995–2000: II. Breed-specific age and survival patterns and relative risk for causes of death. 2005;46:16.

    Google Scholar 

  86. Nunney L. The real war on cancer: the evolutionary dynamics of cancer suppression. Evol Appl. 2013;6:11–9.

    PubMed  Article  Google Scholar 

  87. Peto R, Roe FJ, Lee PN, Levy L, Clack J. Cancer and aging in mice and men. Br J Cancer. 1975;32:411–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Caulin AF, Maley CC. Peto’s Paradox: evolution’s prescription for cancer prevention. Trends Ecol Evol. 2011;26:175–82.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Nunney L. Resolving Peto’s paradox: Modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl. 2020;13:1581–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Vincze O, Colchero F, Lemaître J-F, Conde DA, Pavard S, Bieuville M, et al. Cancer risk across mammals. Nature. 2022;601:263–7.

    CAS  PubMed  Article  Google Scholar 

  91. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8:1–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Albanes D, Winick M. Are cell number and cell proliferation risk factors for cancer? J Natl Cancer Inst. 1988;80:772–4.

    CAS  PubMed  Article  Google Scholar 

  93. Nunney L. Size matters: height, cell number and a person’s risk of cancer. Proc R Soc B Biol Sci. 2018;285:20181743.

    Article  CAS  Google Scholar 

  94. Makielski KM, Mills LJ, Sarver AL, Henson MS, Spector LG, Naik S, et al. Risk factors for development of canine and human osteosarcoma: a comparative review. Vet Sci. 2019;6:48.

    PubMed Central  Article  Google Scholar 

  95. Ujvari B, Klaassen M, Raven N, Russell T, Vittecoq M, Hamede R, et al. Genetic diversity, inbreeding and cancer. Proc R Soc B Biol Sci. 2018;285:20172589.

    Article  Google Scholar 

  96. Dorn CR, Schneider R. Inbreeding and canine mammary ancer: a retrospective study. JNCI J Natl Cancer Inst. 1976;57:545–8.

    CAS  PubMed  Article  Google Scholar 

  97. Bonnett BN, Egenvall A, Hedhammar Å, Olson P. Mortality in over 350,000 insured Swedish dogs from 1995–2000: I. Breed-, gender-, age- and cause-specific rates. 2005;46:16.

    Google Scholar 

  98. Hoffman JM, Creevy KE, Promislow DEL. Reproductive capability is associated with lifespan and cause of death in companion dogs. Helle S editor PLoS ONE. 2013;8:e61082.

    CAS  Article  Google Scholar 

  99. Waters DJ, Kengeri SS, Clever B, Booth JA, Maras AH, Schlittler DL, et al. Exploring mechanisms of sex differences in longevity: lifetime ovary exposure and exceptional longevity in dogs. Aging Cell. 2009;8:752–5.

    CAS  PubMed  Article  Google Scholar 

  100. Waters DJ, Kengeri SS, Maras AH, Chiang EC. Probing the perils of dichotomous binning: how categorizing female dogs as spayed or intact can misinform our assumptions about the lifelong health consequences of ovariohysterectomy. Theriogenology. 2011;76:1496–500.

    CAS  PubMed  Article  Google Scholar 

  101. Oberbauer AM, Belanger JM, Famula TR. A review of the impact of neuter status on expression of inherited conditions in dogs. Front Vet Sci. 2019;6:397.

    PubMed  PubMed Central  Article  Google Scholar 

  102. Urfer SR, Kaeberlein M. Desexing dogs: a review of the current literature. Animals. 2019;9:1086.

    PubMed Central  Article  Google Scholar 

  103. Niskanen M, Thrusfield MV. Associations between age, parity, hormonal therapy and breed, and pyometra in Finnish dogs. Vet Rec. 1998;143:493–8.

    CAS  PubMed  Article  Google Scholar 

  104. Walsh (Stonehenge) JH, Armatage G. The dog: its varieties and management in health [Internet]. London, New York: F. Warne and Co; 1896. Available from: https://archive.org/details/dogitsvarietiesm00wals2. Accessed Dec 2021.

  105. Huntington HW. The show dog [Internet]. Providence, R.I.: For the author, by the Remington print. co. 1901. Available from: https://archive.org/details/showdogbeingabo00huntgoog/mode/2up. Accessed Dec 2021.

  106. Speelman SR, Williams JO. 1926. Breeds of dogs. U.S. Department of Agriculture

  107. Frankham R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol. 2015;24:2610–8.

    PubMed  Article  Google Scholar 

  108. Melis C, Pertoldi C, Ludington WB, Beuchat C, Qvigstad G, Stronen AV. Genetic rescue of the highly inbred Norwegian Lundehund. Genes. 2022;13:163.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Windig JJ, Doekes HP. Limits to genetic rescue by outcross in pedigree dogs. J Anim Breed Genet. 2018;135:238–48.

    CAS  PubMed  Article  Google Scholar 

  110. van Hagen MAE, Ducro BJ, van den Broek J, Knol BW. Life expectancy in a birth cohort of Boxers followed up from weaning to 10 years of age. Am J Vet Res. 2005;66:1646–50.

    PubMed  Article  Google Scholar 

  111. Dobson J, Hoather T, McKinley TJ, Wood JLN. Mortality in a cohort of flat-coated retrievers in the UK. Vet Comp Oncol. 2009;2:115–21. https://doi.org/10.1111/j.1476-5829.2009.00181.x.

    Article  Google Scholar 

Download references

Acknowledgements

NSM and DELP were supported in part by the Dog Aging Project U19 grant AG057377 (PI: Daniel Promislow) from the National Institute on Aging, a part of the National Institutes of Health. We would also like to thank the koiranet team and the Finnish Kennel Club for providing such a valuable resource and making it publicly available. Thanks to Mirka Jantunen and Karina Whittington for breed-specific info. We are grateful for the helpful comments made by the anonymous reviewers on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kraus.

Ethics declarations

Conflict of interest

Dr. Promislow receives payment for reviewing grants for the Waltham Petcare Science Institute. The other authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 117 KB)

Supplementary file2 (DOCX 73 KB)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kraus, C., Snyder-Mackler, N. & Promislow, D.E.L. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience (2022). https://doi.org/10.1007/s11357-022-00653-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-022-00653-w

Keywords

  • Lifespan
  • Old age
  • Cancer
  • Size
  • Genetic diversity
  • Dog breeds