Skip to main content

Advertisement

Log in

Diabetic patients treated with metformin during early stages of Alzheimer’s disease show a better integral performance: data from ADNI study

GeroScience Aims and scope Submit manuscript

Abstract

We evaluated the effect of the antidiabetic drug metformin on patients enrolled in the ADNI study considering patients with mild cognitive impairment (MCI) due to Alzheimer’s disease (AD). Employing data from this observational study, we performed a principal component analysis focusing on the cognitive sphere by evaluating data from neuropsychological tests included in a modified version of the Alzheimer’s Disease Cooperative Study-Preclinical Alzheimer Cognitive Composite (ADCS-PACC). Second, we included the levels of amyloid-β, tau, and phosphorylated tau in CSF. We found that MCI metformin-treated patients were globally characterized as subjects with a better cognitive performance and CSF biomarkers profile than the mean population of MCI patients. On the other hand, control subjects and type 2 diabetes patients (T2D) were paired by age, gender, ApoE allele, and years of education, defining three groups: MCI, MCI + T2D, and MCI + T2D + metformin. We evaluated the effect of T2D and metformin treatment employing the PACC score and composites defined from standardized ADNI variables to evaluate the memory and learning function. We found that MCI + T2D patients had a worse cognitive performance than MCI patients, but this deleterious effect was not observed in MCI + T2D + metformin patients. These cognitive variations were associated with changes in cortical thickness and hippocampal volume. Finally, no differences were found in metabolic plasmatic parameters (glycemia, cholesterol, triglycerides). Our study—employing different strategies for data analysis from the global study ADNI—shows a beneficial effect of metformin treatment on cognitive performance, CSF biomarkers profile, and neuroanatomical measures in MCI due to AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbatecola AM, Paolisso G, Lamponi M, Bandinelli S, Lauretani F, et al. Insulin resistance and executive dysfunction in older persons. Journal of the American Geriatrics Society. 2004;52:1713–8.

    Article  PubMed  Google Scholar 

  2. Andreasen N, Blennow K. Beta-amyloid (Abeta) protein in cerebrospinal fluid as a biomarker for Alzheimer’s disease. Peptides. 2002;23:1205–14.

    Article  CAS  PubMed  Google Scholar 

  3. Arai H, Terajima M, Miura M, Higuchi S, Muramatsu T, et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol. 1995;38:649–52.

    Article  CAS  PubMed  Google Scholar 

  4. Alzheimer’s Association. Alzheimer’s disease facts and figures. 2018. https://www.alz.org/media/HomeOffice/Facts%20and%20Figures/facts-and-figures.pdf.

  5. Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology. 2009;72:1048–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell metabolism. 2020;32:44-55 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63:572–9.

    Article  CAS  PubMed  Google Scholar 

  8. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284:643–63.

    Article  CAS  PubMed  Google Scholar 

  9. Criado-Marrero M, Smith TM, Gould LA, Kim S, Penny HJ, et al. FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain, behavior, & immunity - health. 2020;9:100143.

    Article  Google Scholar 

  10. Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017;6.

  11. Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-beta burden in APP/PS1 mice. Alzheimer’s research & therapy. 2021;13:40.

    Article  CAS  Google Scholar 

  12. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71:961–70.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. Journal of aging research. 2012;2012:384017.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. Journal of Alzheimer’s disease : JAD. 2019;68:1699–710.

    Article  CAS  PubMed  Google Scholar 

  15. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47:145–71.

    Article  CAS  PubMed  Google Scholar 

  16. Han J, Li Y, Liu X, Zhou T, Sun H, et al. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PloS one. 2018;13:e0193031.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ihara M, Saito S. Drug repositioning for Alzheimer’s disease: finding hidden clues in old drugs. Journal of Alzheimer’s disease : JAD. 2020;74:1013–28.

    Article  PubMed  Google Scholar 

  18. Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60:916–21.

    Article  PubMed  Google Scholar 

  19. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14:535–62.

    Article  PubMed  Google Scholar 

  20. Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience. 2021;43:1093–112.

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Lee JE, Jung YJ, Lee AS, Lee S, et al. Metformin decreases high-fat diet-induced renal injury by regulating the expression of adipokines and the renal AMP-activated protein kinase/acetyl-CoA carboxylase pathway in mice. Int J Mol Med. 2013;32:1293–302.

    Article  CAS  PubMed  Google Scholar 

  22. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.

    Article  Google Scholar 

  23. Kivipelto M, Mangialasche F, Snyder HM, Allegri R, Andrieu S, et al. World-Wide FINGERS Network: a global approach to risk reduction and prevention of dementia. Alzheimer’s Dementia. 2020;16:1078–94.

    Article  PubMed  Google Scholar 

  24. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31:107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee S, Kang BM, Kim JH, Min J, Kim HS, et al. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep. 2018;8:13064.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li MZ, Zheng LJ, Shen J, Li XY, Zhang Q, et al. SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes. Neural Regen Res. 2018;13:2005–13.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Chhipa RR, Nakano I, Dasgupta B. The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther. 2014;13:596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv WS, Wen JP, Li L, Sun RX, Wang J, et al. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res. 2012;1444:11–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ma R, Yi B, Riker AI, Xi Y. Metformin and cancer immunity. Acta Pharmacol Sin. 2020;41:1403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacVicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harbor Perspect Biol 2015;7.

  31. Manaenko A, Chen H, Kammer J, Zhang JH, Tang J. Comparison Evans Blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 2011;195:206–10.

    Article  PubMed  Google Scholar 

  32. Markowicz-Piasecka M, Sikora J, Szydlowska A, Skupien A, Mikiciuk-Olasik E, Huttunen KM. Metformin - a future therapy for neurodegenerative diseases: Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm Res. 2017;34:2614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    Article  PubMed  Google Scholar 

  34. Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013;36:2981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. Journal of Alzheimer’s disease : JAD. 2014;41:61–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–63.

    Article  PubMed  Google Scholar 

  37. Ping F, Jiang N, Li Y. Association between metformin and neurodegenerative diseases of observational studies: systematic review and meta-analysis. BMJ Open Diabetes Res Care 2020;8.

  38. Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des. 2012;18:3624–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–701.

    Article  CAS  PubMed  Google Scholar 

  40. Soraya H, Clanachan AS, Rameshrad M, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A. Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur J Pharmacol. 2014;737:77–84.

    Article  CAS  PubMed  Google Scholar 

  41. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vinuesa A, Bentivegna M, Calfa G, Filipello F, Pomilio C, et al. Early exposure to a high-fat diet impacts on hippocampal plasticity: implication of microglia-derived exosome-like extracellular vesicles. Mol Neurobiol. 2019;56:5075–94.

    Article  CAS  PubMed  Google Scholar 

  43. Wang YW, He SJ, Feng X, Cheng J, Luo YT, et al. Metformin: a review of its potential indications. Drug Des Dev Ther. 2017;11:2421–9.

    Article  CAS  Google Scholar 

  44. White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW, et al. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell. 2016;165:75–87.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan SY, Liu J, Zhou J, Lu W, Zhou HY, et al. AMPK mediates glucocorticoids stress-induced downregulation of the glucocorticoid receptor in cultured rat prefrontal cortical astrocytes. PloS one. 2016;11:e0159513.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the scientific contribution of Ezequiel Surace, PhD; Juan Beauquis, MD, PhD; Angeles Vinuesa, PhD; and Patricio Chrem Mendez MD.

Funding

This work was supported by Williams, René Barón, and Florencio Fiorini Foundations, ANPCyT PICT Grants: 2016–1046, 2016–1572, 2019–3419 and UBACyT 2018 Grant. The funding sources had no involvement in the study design nor the collection, analysis and interpretation of data. CP is recipient of CONICET Fellowship. FS is CONICET Researcher.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12–2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuroimaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Flavia Saravia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomilio, C., Pérez, N.G., Calandri, I. et al. Diabetic patients treated with metformin during early stages of Alzheimer’s disease show a better integral performance: data from ADNI study. GeroScience 44, 1791–1805 (2022). https://doi.org/10.1007/s11357-022-00568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00568-6

Keywords

Navigation