Skip to main content

Advertisement

Log in

Immune phenotype of the CD4+ T cells in the aged lymphoid organs and lacrimal glands

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract 

Aging is associated with a massive infiltration of T lymphocytes in the lacrimal gland. Here, we aimed to characterize the immune phenotype of aged CD4+ T cells in this tissue as compared with lymphoid organs. To perform this, we sorted regulatory T cells (Tregs, CD4+CD25+GITR+) and non-Tregs (CD4+CD25negGITRneg) in lymphoid organs from female C57BL/6J mice and subjected these cells to an immunology NanoString® panel. These results were confirmed by flow cytometry, live imaging, and tissue immunostaining in the lacrimal gland. Importantly, effector T helper 1 (Th1) genes were highly upregulated on aged Tregs, including the master regulator Tbx21. Among the non-Tregs, we also found a significant increase in the levels of EOMESmed/high, TbetnegIFN-γ+, and CD62L+CD44negCD4+ T cells with aging, which are associated with cell exhaustion, immunopathology, and the generation of tertiary lymphoid tissue. At the functional level, aged Tregs from lymphoid organs are less able to decrease proliferation and IFN-γ production of T responders at any age. More importantly, human lacrimal glands (age range 55–81 years) also showed the presence of CD4+Foxp3+ cells. Further studies are needed to propose potential molecular targets to avoid immune-mediated lacrimal gland dysfunction with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author. The datasets for this study can be found in the GEO repository (Access ID GSE192408).

References 

  1. Turner VM, Mabbott NA. Ageing adversely affects the migration and function of marginal zone B cells. Immunology. 2017;151(3):349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Márquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, et al. Sexual-dimorphism in human immune system aging. Nat Commun. 2020;11(1):751.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining chronic inflammation in aging and age-related diseases proposal of the senoinflammation concept. Aging Dis. 2019;10(2):367–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33(6):297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ligon MM, Wang C, DeJong EN, Schulz C, Bowdish DME, Mysorekar IU. Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunology. 2020;13(6):908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matossian C, McDonald M, Donaldson KE, Nichols KK, MacIver S, Gupta PK. Dry eye disease: consideration for women’s health. Journal of Women’s Health (2002) 2019; 28(4):502–514.

  7. Williamson J, Gibson AA, Wilson T, Forrester JV, Whaley K, Dick WC. Histology of the lacrimal gland in keratoconjunctivitis sicca. Br J Ophthalmol. 1973;57(11):852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Souza RG, de Paiva CS, Alves MR. Age-related autoimmune changes in lacrimal glands. Immune Network 2019;19(1):e3.

  9. de Souza RG, Yu Z, Hernandez H, Trujillo-Vargas CM, Lee A, Mauk KE, et al. Modulation of oxidative stress and inflammation in the aged lacrimal gland. Am J Pathol. 2020;191(2):294–308.

    Article  PubMed  Google Scholar 

  10. Rios JD, Horikawa Y, Chen LL, Kublin CL, Hodges RR, Dartt DA, et al. Age-dependent alterations in mouse exorbital lacrimal gland structure, innervation and secretory response. ExpEye Res. 2005;80(4):477–91.

    CAS  Google Scholar 

  11. Marinkovic T, Garin A, Yokota Y, Fu Y-X, Ruddle NH, Furtado GC, et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Investig. 2006;116(10):2622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma S, Dominguez AL, Lustgarten J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol. 2006;177(12):8348–55.

    Article  CAS  PubMed  Google Scholar 

  13. Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181(3):1835–48.

    Article  CAS  PubMed  Google Scholar 

  14. Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, et al. Aging is associated with increased regulatory T-cell function. Aging Cell. 2014;13(3):441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A, Fink P, et al. A major role for Bim in regulatory T cell homeostasis. J Immunol. 2011;186(1):156–63.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol. 2013;48(12):1379–86.

    Article  CAS  PubMed  Google Scholar 

  17. Derhovanessian E, Chen S, Maier AB, Hähnel K, de Craen AJ, Roelofs H, et al. CCR4+ regulatory T cells accumulate in the very elderly and correlate with superior 8-year survival. J Gerontol A Biol Sci Med Sci. 2015;70(8):917–23.

    Article  CAS  PubMed  Google Scholar 

  18. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. Foxp3+ T-regulatory cells in Sjogren’s syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173(5):1389–96.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sarigul M, Yazisiz V, Bassorgun CI, Ulker M, Avci AB, Erbasan F, et al. The numbers of Foxp3 + Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren’s syndrome. Lupus. 2010;19(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  20. Coursey TG, Bian F, Zaheer M, Pflugfelder SC, Volpe EA, de Paiva CS. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10(3):743–456.

    Article  CAS  PubMed  Google Scholar 

  21. Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14(3):154–65.

    Article  CAS  PubMed  Google Scholar 

  22. Bian F, Xiao Y, Barbosa FL, de Souza RG, Hernandez H, Yu Z, et al. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol. 2019;12(4):897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Chikuma S, Hori S, Fagarasan S, Honjo T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc Natl Acad Sci. 2016;113(30):8490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao G, Nayak S, Regueiro JR, Berger SB, Detre C, Romero X, et al. GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells. Int Immunol. 2010;22(4):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams-Bey Y, Jiang J, Murasko DM. Expansion of regulatory T cells in aged mice following influenza infection. Mech Ageing Dev. 2011;132(4):163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raynor J, Karns R, Almanan M, Li KP, Divanovic S, Chougnet CA, et al. IL-6 and ICOS antagonize Bim and promote regulatory T cell accrual with age. J Immunol. 2015;195(3):944–52.

    Article  CAS  PubMed  Google Scholar 

  27. Mu J, Tai X, Iyer SS, Weissman JD, Singer A, Singer DS. Regulation of MHC class I expression by Foxp3 and its effect on regulatory T cell function. J Immunol. 2014;192(6):2892–903.

    Article  CAS  PubMed  Google Scholar 

  28. Walters S, Webster KE, Sutherland A, Gardam S, Groom J, Liuwantara D, et al. Increased CD4+Foxp3+ T cells in BAFF-transgenic mice suppress T cell effector responses. J Immunol. 2009;182(2):793.

    Article  CAS  PubMed  Google Scholar 

  29. Vences-Catalán F, Rajapaksa R, Srivastava MK, Marabelle A, Kuo CC, Levy R, et al. Tetraspanin CD81, a modulator of immune suppression in cancer and metastasis. OncoImmunology. 2016;5(5):e1120399.

    Article  PubMed  Google Scholar 

  30. Piconese S, Timperi E, Barnaba V. ‘Hardcore’ OX40+ immunosuppressive regulatory T cells in hepatic cirrhosis and cancer. OncoImmunology. 2014;3(6):e29257.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lo Re S, Lecocq M, Uwambayinema F, Yakoub Y, Delos M, Demoulin JB, et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med. 2011;184(11):1270–81.

    Article  CAS  PubMed  Google Scholar 

  32. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster KE, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5(2):161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishikii H, Kim B-S, Yokoyama Y, Chen Y, Baker J, Pierini A, et al. DR3 signaling modulates the function of Foxp3+ regulatory T cells and the severity of acute graft-versus-host disease. Blood. 2016;128(24):2846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol. 2016;34(1):609–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deane JA, Abeynaike LD, Norman MU, Wee JL, Kitching AR, Kubes P, et al. Endogenous regulatory T cells adhere in inflamed dermal vessels via ICAM-1: association with regulation of effector leukocyte adhesion. J Immunol. 2012;188(5):2179.

    Article  CAS  PubMed  Google Scholar 

  36. Wheaton JD, Yeh CH, Ciofani M. Cutting edge: c-Maf is required for regulatory T cells to adopt RORγt(+) and follicular phenotypes. J Immunol. 2017;199(12):3931–6.

    Article  CAS  PubMed  Google Scholar 

  37. Liu T, Soong L, Liu G, König R, Chopra AK. CD44 expression positively correlates with Foxp3 expression and suppressive function of CD4+ Treg cells. Biol Direct. 2009;4(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rappl G, Schmidt A, Mauch C, Hombach AA, Abken H. Extensive amplification of human regulatory T cells alters their functional capacities and targets them to the periphery. Rejuvenation Res. 2008;11(5):915–33.

    Article  CAS  PubMed  Google Scholar 

  39. Chauhan SK, El AJ, Ecoiffier T, Goyal S, Zhang Q, Saban DR, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182(3):1247–52.

    Article  CAS  PubMed  Google Scholar 

  40. de Paiva CS, Villarreal AL, Corrales RM, Rahman HT, Chang VY, Farley WJ, et al. Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci. 2007;48(6):2553–60.

    Article  PubMed  Google Scholar 

  41. Schaumburg CS, Siemasko KF, de Paiva CS, Wheeler LA, Niederkorn JY, Pflugfelder SC, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol. 2011;187(7):3653–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kitz A, Dominguez-Villar M. Molecular mechanisms underlying Th1-like Treg generation and function. Cell Mol Life Sci. 2017;74(22):4059–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koch MA, Thomas KR, Perdue NR, Smigiel KS, Srivastava S, Campbell DJ. T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor β2. Immunity. 2012;37(3):501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10(6):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, Dos Santos L, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009;31(5):772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao J, Zhao J, Fett C, Trandem K, Fleming E, Perlman S. IFN-γ- and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis. J Exp Med. 2011;208(8):1571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turner VM, Mabbott NA. Structural and functional changes to lymph nodes in ageing mice. Immunol. 2017;151(2):239–47.

    Article  CAS  Google Scholar 

  48. Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019;19(9):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Honey K. CCL3 and CCL4 actively recruit CD8+ T cells. Nat Rev Immunol. 2006;6(6):427–427.

    Article  CAS  Google Scholar 

  50. Dock J, Ramirez CM, Hultin L, Hausner MA, Hultin P, Elliott J, et al. Distinct aging profiles of CD8+ T cells in blood versus gastrointestinal mucosal compartments. PLoS One. 2017;12(8):e0182498.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Francis JN, Sabroe I, Lloyd CM, Durham SR, Till SJ. Elevated CCR6+ CD4+ T lymphocytes in tissue compared with blood and induction of CCL20 during the asthmatic late response. Clin Exp Immunol. 2008;152(3):440–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Podojil JR, Kohm AP, Miller SD. CD4+ T cell expressed CD80 regulates central nervous system effector function and survival during experimental autoimmune encephalomyelitis. J Immunol. 2006;177(5):2948–58.

    Article  CAS  PubMed  Google Scholar 

  53. Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, et al. CD74 signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell Mol Gastroenterol Hepatol. 2020;10(1):101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Channappanavar R, Twardy BS, Krishna P, Suvas S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech Ageing Dev. 2009;130(10):709–12.

    Article  CAS  PubMed  Google Scholar 

  55. Ehrlich AK, Pennington JM, Tilton S, Wang X, Marshall NB, Rohlman D, et al. AhR activation increases IL-2 production by alloreactive CD4+ T cells initiating the differentiation of mucosal-homing Tim3+Lag3+ Tr1 cells. Eur J Immunol. 2017;47(11):1989–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hiramatsu Y, Suto A, Kashiwakuma D, Kanari H, Kagami S-I, Ikeda K, et al. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-β inhibits c-Maf-induced IL-21 production in CD4+ T cells. J Leukoc Biol. 2010;87(4):703–12.

    Article  CAS  PubMed  Google Scholar 

  57. Fu S-H, Yeh L-T, Chu C-C, Yen BL-J, Sytwu H-K. New insights into Blimp-1 in T lymphocytes a divergent regulator of cell destiny and effector function. J Biomed Sci. 2017;24(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tau GZ, von der Weid T, Lu B, Cowan S, Kvatyuk M, Pernis A, et al. Interferon gamma signaling alters the function of T helper type 1 cells. J Exp Med. 2000;192(7):977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bishu S, Hernández-Santos N, Simpson-Abelson MR, Huppler AR, Conti HR, Ghilardi N, et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect Immun. 2014;82(3):1173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  60. De Fanis U, Wang GC, Fedarko NS, Walston JD, Casolaro V, Leng SX. T-Lymphocytes expressing CC chemokine receptor-5 are increased in frail older adults. J Am Geriatr Soc. 2008;56(5):904–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mueller A, Strange PG. CCL3, acting via the chemokine receptor CCR5, leads to independent activation of Janus kinase 2 (JAK2) and Gi proteins. FEBS Lett. 2004;570(1–3):126–32.

    Article  CAS  PubMed  Google Scholar 

  63. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012;338(6111):1220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. López-Yglesias AH, Burger E, Araujo A, Martin AT, Yarovinsky F. T-bet-independent Th1 response induces intestinal immunopathology during Toxoplasma gondii infection. Mucosal Immunol. 2018;11(3):921–31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Harpaz I, Bhattacharya U, Elyahu Y, Strominger I, Monsonego A. Old mice accumulate activated effector CD4 T cells refractory to regulatory T cell-induced immunosuppression. Front Immunol. 2017;8:283.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klann JE, Kim SH, Remedios KA, He Z, Metz PJ, Lopez J, et al. Integrin activation controls tegulatory T cell–mediated peripheral tolerance. J Immunol. 2018;200(12):4012.

    Article  CAS  PubMed  Google Scholar 

  67. Lei Y, Takahama Y. XCL1 and XCR1 in the immune system. Microbes Infect. 2012;14(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  68. Mattoo H, Mahajan VS, Maehara T, Deshpande V, Della-Torre E, Wallace ZS, et al. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J Allergy Clin Immunol. 2016;138(3):825–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hughes-Fulford M, Sugano E, Schopper T, Li C-F, Boonyaratanakornkit JB, Cogoli A. Early immune response and regulation of IL-2 receptor subunits. Cell Signal. 2005;17(9):1111–24.

    Article  CAS  PubMed  Google Scholar 

  70. Nasu M, Matsubara O, Yamamoto H. Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases. J Pathol. 1984;143(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  71. Damato BE, Allan D, Murray SB, Lee WR. Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease. Br J Ophthalmol. 1984;68(9):674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paulsen F, Langer G, Hoffmann W, Berry M. Human lacrimal gland mucins. Cell Tissue Res. 2004;316(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  73. Obata H. Anatomy and histopathology of the human lacrimal gland. Cornea. 2006;25(10 Suppl 1):S82–9.

    Article  PubMed  Google Scholar 

  74. Gudmundsson OG, Benediktsson H, Olafsdottir K. T-lymphocyte subsets in the human lacrimal gland. Acta Ophthalmol. 1988;66(1):19–23.

    Article  CAS  Google Scholar 

  75. Gudmundsson OG, Bjornsson J, Olafsdottir K, Bloch KJ, Allansmith MR, Sullivan DA. T cell populations in the lacrimal gland during aging. Acta Ophthalmol. 1988;66(5):490–7.

    Article  CAS  Google Scholar 

  76. Wieczorek R, Jakobiec FA, Sacks EH, Knowles DM. The immunoarchitecture of the normal human lacrimal gland Relevancy for understanding pathologic conditions. Ophthalmol. 1988;95(1):100–9.

    Article  CAS  Google Scholar 

  77. Segerberg-Konttinen M. Focal adenitis in lacrimal and salivary glands A post-mortem study. Scand J Rheumatol. 1988;17(5):379–85.

    Article  CAS  PubMed  Google Scholar 

  78. Volpe EA, Henriksson JT, Wang C, Barbosa FL, Zaheer M, Zhang X, et al. Interferon-gamma deficiency protects against aging-related goblet cell loss. Oncotarget. 2016;7(40):64605–6461.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Perkins JR, Dawes JM, McMahon SB, Bennett DL, Orengo C, Kohl M. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data. BMC Genomics. 2012;13:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hennig C. Cran-package fpc. https://cran.r-project.org/web/packages/fpc/index.html. Accessed Jan 2021.

  81. Alexa A, J. R. topGO: enrichment analysis for Gene Ontology. R package version 1381, 2019.

  82. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):D351-d360.

    Article  CAS  PubMed  Google Scholar 

  83. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, et al. The NCBI BioSystems database. Nucleic Acids Res. 2010;38(Database issue):D492-496.

    Article  CAS  PubMed  Google Scholar 

  84. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinforma. 2011;27(12):1739–40.

    Article  CAS  Google Scholar 

  86. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649-d655.

    Article  CAS  PubMed  Google Scholar 

  87. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018;46(D1):D661-d667.

    Article  CAS  PubMed  Google Scholar 

  88. Oliveros JC. Venny. An interactive tool for comparing lists with Venn’s diagrams. 2017. https://bioinfogp.cnb.csic.es/tools/venny/indexhtml. Accessed Jan 2021.

  89. Elyahu Y, Hekselman I, Eizenberg-Magar I, Berner O, Strominger I, Schiller M, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5(8):eaaw8330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Appay V, Sauce D. Naive T cells: the crux of cellular immune aging? Exp Gerontol. 2014;54:90–3.

    Article  CAS  PubMed  Google Scholar 

  91. Min B. Spontaneous T cell proliferation: a physiologic process to create and maintain homeostatic balance and diversity of the immune system. Frontiers in Immunology. 2018;19(9):547.

    Article  Google Scholar 

  92. Koch S, Larbi A, Özcelik D, Solana R, Gouttefangeas C, Attig S, et al. Cytomegalovirus infection. Annals New York Acad Sci. 2007;1114(1):2335.

    Article  Google Scholar 

  93. Pflugfelder SC, Crouse CA, Monroy D, Yen M, Rowe M, Atherton SS. Epstein-Barr virus and the lacrimal gland pathology of Sjogren’s syndrome. Am J Pathol. 1993;143(1):49–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Soon MSF, Engel JA, Lee HJ, Haque A. Development of circulating CD4+ T-cell memory. Immunol Cell Biol. 2019;97(7):617–24.

    Article  CAS  PubMed  Google Scholar 

  95. Fang F, Yu M, Cavanagh Mary M, Hutter Saunders J, Qi Q, Ye Z, et al. Expression of CD39 on activated T cells impairs their survival in older individuals. Cell Rep. 2016;14(5):1218–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guerrini Matteo M, Okamoto K, Komatsu N, Sawa S, Danks L, Penninger Josef M, et al. Inhibition of the TNF family cytokine RANKL prevents autoimmune inflammation in the central nervous system. Immunity. 2015;43(6):1174–85.

    Article  CAS  PubMed  Google Scholar 

  97. Akimova T, Levine MH, Beier UH, Hancock WW. Standardization, evaluation, and area-under-curve analysis of human and murine Treg suppressive function. Methods in Mol Biol (Clifton, NJ). 2016;1371:43–78.

    Article  CAS  Google Scholar 

  98. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol. 2006;176(11):6586–93.

    Article  CAS  PubMed  Google Scholar 

  99. Morales-Nebreda L, Helmin KA, Torres Acosta MA, Markov NS, Hu JY, Joudi AM et al. Aging imparts cell-autonomous dysfunction to regulatory T cells during recovery from influenza pneumonia. JCI Insight 2021;6(6):e141690.

  100. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmol. 1995;102(4):678–86.

    Article  CAS  Google Scholar 

  101. Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(3):311–21.

    Article  PubMed  Google Scholar 

  102. Rocha EM, Alves M, Rios JD, Dartt DA. The aging lacrimal gland: changes in structure and function. Ocul Surf. 2008;6(4):162–74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Ron Korstanje, Hannah Donnato, and Laura Robinson from the Nathan Shock Center for Excellence of Aging at Jackson Laboratory for their contribution and Dr. Will Schott at the Flow Cytometry Service at the Jackson Laboratory for the expert assistance with the work described in this publication. We also acknowledge the expert assistance of Brandon Saxton and Joel Sederstrom with the imaging cytometer at Baylor College of Medicine. Leiqi Zhang is acknowledged with the aged colony management. The authors would like to thank Hong Nguyen for the excellent technical assistance (Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg). Moreover, the authors sincerely thank those who donated their bodies to science so that anatomical research could be performed.

Funding

This work was supported by NIH EY030447 (CSdeP), NEI Training Grant in Vision Sciences T32 EY007001 (HH), NIH/NEI EY002520 (Core Grant for Vision Research Department of Ophthalmology), NIH Pathology Core (P30CA125123), BCM Genomic & RNA Profiling Core GARP Core (P30 Digestive Disease Center Support Grant [NIDDK-DK56338]), and Baylor Cytometry and Cell Sorting Core (CPRIT Core Facility Support Award [CPRIT-RP180672], P30 Cancer Center Support Grant [NCI-CA125123], NIH-RR024574, and NIH S10 OD025251 [Union BioMetrica BioSorter]). Further research support was provided by the NIH to the Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging (AG038070) Pilot Grant (CSdeP), Research to Prevent Blindness (unrestricted grant to the Department of Ophthalmology), the Hamill Foundation, and the Sid Richardson Foundation and ARVO Roche Collaborative Research Fellowship (JGG). Claudia M. Trujillo-Vargas received supplemental salary support from Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant PA738/15–1 to FP.

Author information

Authors and Affiliations

Authors

Contributions

CSdeP and CMT-V were involved in the conception and design of the study. CSdeP, CMT-V, KEM, HH, RGdeS, ZY, JD, and FP were involved in data acquisition. CSdeP, CMT-V, KEM, JGG, JD, and FP were involved in the data analysis and interpretation. CMT-V drafted the manuscript, and CSdeP edited it. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Cintia S. de Paiva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo-Vargas, C.M., Mauk, K.E., Hernandez, H. et al. Immune phenotype of the CD4+ T cells in the aged lymphoid organs and lacrimal glands. GeroScience 44, 2105–2128 (2022). https://doi.org/10.1007/s11357-022-00529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00529-z

Keywords

Navigation