Skip to main content

Advertisement

Log in

Classical risk factors for primary coronary artery disease from an aging perspective through Mendelian Randomization

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The significance of classical risk factors in coronary artery disease (CAD) remains unclear in older age due to possible changes in underlying disease pathologies. Therefore, we conducted Mendelian Randomization approaches to investigate the causal relationship between classical risk factors and primary CAD in different age groups. A Mendelian Randomization study was conducted in European-ethnicity individuals from the UK Biobank population. Analyses were performed using data of 22,313 CAD cases (71.6% men) and 407,920 controls (44.5% men). Using logistic regression analyses, we investigated the associations between standardized genetic risk score and primary CAD stratified by age of diagnosis. In addition, feature importance and model accuracy were assessed in different age groups to evaluate predictive power of the genetic risk scores with increasing age. We found age-dependent associations for all classical CAD risk factors. Notably, body mass index (OR 1.22 diagnosis < 50 years; OR 1.02 diagnosis > 70 years), blood pressure (OR 1.12 < 50 years; OR 1.04 > 70 years), LDL cholesterol (OR 1.16 < 50 years; OR 1.02 > 70 years), and triglyceride levels (OR 1.11 < 50 years; 1.04 > 70 years). In line with the Mendelian Randomization analyses, model accuracy and feature importance of the classical risk factors decreased with increasing age of diagnosis. Causal determinants for primary CAD are age dependent with classical CAD risk factors attenuating in relation with primary CAD with increasing age. These results question the need for (some) currently applied cardiovascular disease risk reducing interventions at older age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data of the UK Biobank is available upon acceptance of a research proposal submitted to UK Biobank Resources (https://www.ukbiobank.ac.uk/).

References

  1. Cholesterol Treatment Trialists Collaboration, Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405. https://doi.org/10.1016/S0140-6736(14)61368-4.

    Article  CAS  Google Scholar 

  2. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67. https://doi.org/10.1016/S0140-6736(15)01225-8.

    Article  PubMed  Google Scholar 

  3. Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, et al. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. 2017;359:j4849. https://doi.org/10.1136/bmj.j4849.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kane JA, Mehmood T, Munir I, Kamran H, Kariyanna PT, Zhyvotovska A, et al. Cardiovascular risk reduction associated with pharmacological weight loss: a meta-analysis. Int J Clin Res Trials. 2019 4(1). https://doi.org/10.15344/2456-8007/2019/131.

  5. Prospective Studies Collaboration, Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602):1829–39. https://doi.org/10.1016/S0140-6736(07)61778-4.

    Article  CAS  Google Scholar 

  6. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  7. van den Hoogen PC, van Popele NM, Feskens EJ, van der Kuip DA, Grobbee DE, Hofman A, et al. Blood pressure and risk of myocardial infarction in elderly men and women: the Rotterdam study. J Hypertens. 1999;17(10):1373–8. https://doi.org/10.1097/00004872-199917100-00003.

    Article  PubMed  Google Scholar 

  8. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623–30. https://doi.org/10.1016/s0140-6736(02)11600-x.

    Article  CAS  PubMed  Google Scholar 

  9. Collaboration CTT. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393(10170):407–15. https://doi.org/10.1016/S0140-6736(18)31942-1.

    Article  Google Scholar 

  10. Murad MH, Larrea-Mantilla L, Haddad A, Spencer-Bonilla G, Serrano V, Rodriguez-Gutierrez R, et al. Antihypertensive agents in older adults: a systematic review and meta-analysis of randomized clinical trials. J Clin Endocrinol Metab. 2019;104(5):1575–84. https://doi.org/10.1210/jc.2019-00197.

    Article  PubMed  Google Scholar 

  11. Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, et al. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One. 2009;4(8):e6767. https://doi.org/10.1371/journal.pone.0006767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23(5):1186–201. https://doi.org/10.1093/hmg/ddt531.

    Article  CAS  PubMed  Google Scholar 

  13. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570. https://doi.org/10.1038/ncomms9570.

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11. https://doi.org/10.1161/CIRCULATIONAHA.109.886655.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mooijaart SP, Broekhuizen K, Trompet S, de Craen AJ, Gussekloo J, Oleksik A, et al. Evidence-based medicine in older patients: how can we do better? Neth J Med. 2015;73(5):211–8.

    CAS  PubMed  Google Scholar 

  16. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. https://doi.org/10.1002/sim.3034.

    Article  PubMed  Google Scholar 

  17. Dale CE, Fatemifar G, Palmer TM, White J, Prieto-Merino D, Zabaneh D, et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a Mendelian Randomization analysis. Circulation. 2017;135(24):2373–88. https://doi.org/10.1161/CIRCULATIONAHA.116.026560.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian Randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50. https://doi.org/10.1093/eurheartj/eht571.

    Article  CAS  PubMed  Google Scholar 

  19. Nazarzadeh M, Pinho-Gomes AC, Smith Byrne K, Canoy D, Raimondi F, Ayala Solares JR, et al. Systolic blood pressure and risk of valvular heart disease: a Mendelian Randomization study. JAMA Cardiol. 2019;4(8):788–95. https://doi.org/10.1001/jamacardio.2019.2202.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.PMEDICINE-D-12-02351[pii].

    Article  PubMed  PubMed Central  Google Scholar 

  21. UK10K Consortium, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526(7571):82–90. https://doi.org/10.1038/nature14962.

    Article  CAS  Google Scholar 

  22. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393.

    Article  CAS  Google Scholar 

  23. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83. https://doi.org/10.1038/ng.3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83. https://doi.org/10.1038/ng.2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. https://doi.org/10.1038/nature10405.

    Article  CAS  Google Scholar 

  27. Davies NM, Holmes MV, Davey SG. Reading Mendelian Randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. https://doi.org/10.1136/bmj.k601.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marschner IA. glm2: Fitting generalized linear models with convergence problems. The R Journal. 2011;3(2):12–5.

    Article  Google Scholar 

  29. Noordam R, Lall K, Smit RAJ, Laisk T, Estonian Biobank Research T, Metspalu A, et al. Stratification of type 2 diabetes by age of diagnosis in the UK Biobank reveals subgroup-specific genetic associations and causal risk profiles. Diabetes. 2021;70(8):1816–25. https://doi.org/10.2337/db20-0602.

    Article  CAS  PubMed  Google Scholar 

  30. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: a library for large linear classification. J Mach Learn Res. 2008;9:1871–4.

    Google Scholar 

  31. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  32. Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Res. 2011;2:37–63.

    Google Scholar 

  33. Smit RAJ, Trompet S, Dekkers OM, Jukema JW, le Cessie S. Survival bias in Mendelian Randomization studies: a threat to causal inference. Epidemiology. 2019;30(6):813–6. https://doi.org/10.1097/EDE.0000000000001072.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marston NA, Giugliano RP, Im K, Silverman MG, O’Donoghue ML, Wiviott SD, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation. 2019;140(16):1308–17. https://doi.org/10.1161/CIRCULATIONAHA.119.041998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van der Ploeg MA, Floriani C, Achterberg WP, Bogaerts JMK, Gussekloo J, Mooijaart SP, et al. Recommendations for (discontinuation of) statin treatment in older adults: review of guidelines. J Am Geriatr Soc. 2020;68(2):417–25. https://doi.org/10.1111/jgs.16219.

    Article  PubMed  Google Scholar 

  36. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98. https://doi.org/10.1056/NEJMoa0801369.

    Article  CAS  PubMed  Google Scholar 

  37. Gueyffier F, Bulpitt C, Boissel JP, Schron E, Ekbom T, Fagard R, et al. Antihypertensive drugs in very old people: a subgroup meta-analysis of randomised controlled trials INDANA Group. Lancet. 1999;353(9155):793–6. https://doi.org/10.1016/s0140-6736(98)08127-6.

    Article  CAS  PubMed  Google Scholar 

  38. Lotta LA, Stewart ID, Sharp SJ, Day FR, Burgess S, Luan J, et al. Association of genetically enhanced lipoprotein lipase-mediated lipolysis and low-density lipoprotein cholesterol-lowering alleles with risk of coronary disease and type 2 diabetes. JAMA Cardiol. 2018;3(10):957–66. https://doi.org/10.1001/jamacardio.2018.2866.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med. 1988;108(1):7–13. https://doi.org/10.7326/0003-4819-108-1-7.

    Article  CAS  PubMed  Google Scholar 

  40. Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012;16(12):1492–526. https://doi.org/10.1089/ars.2011.4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–108. https://doi.org/10.1161/CIRCRESAHA.111.246876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was conducted using the UK Biobank study under Application Number 56340.

Funding

This work was supported by an innovation grant from the Dutch Heart Foundation (grant number 2019T103 to R.N.).

Author information

Authors and Affiliations

Authors

Contributions

Study design: SAJ, BH, DvH, RN. Data acquisition: RN. Data interpretation: SAJ, BH, JWJ, ST, SPM, KWvD, DvH, RN. Drafting the manuscript: SAJ, RN. Critical comments on the manuscript: all authors. Final approval of the manuscript: RN. Guarantator of the study: RN.

Corresponding author

Correspondence to Raymond Noordam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5661 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, S.A., Huiskens, B., Trompet, S. et al. Classical risk factors for primary coronary artery disease from an aging perspective through Mendelian Randomization. GeroScience 44, 1703–1713 (2022). https://doi.org/10.1007/s11357-021-00498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00498-9

Keywords

Navigation