Skip to main content

Advertisement

Log in

Pterocarpus marsupium extract extends replicative lifespan in budding yeast

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

A Correction to this article was published on 23 March 2022

This article has been updated

Abstract

As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Sierra F, Kohanski R. Geroscience and the trans-NIH Geroscience Interest Group. Geroscience. 2017;39:1–5. https://doi.org/10.1007/s11357-016-9954-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee MB, Kaeberlein M. Translational geroscience: from invertebrate models to companion animal and human interventions Translational Medicine of Aging. 2018;2:15–29. https://doi.org/10.1016/j.tma.2018.08.002.

    Article  Google Scholar 

  3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks aging cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  Google Scholar 

  4. Kennedy BK, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13. https://doi.org/10.1016/j.cell.2014.10.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaeberlein M. Translational geroscience: a new paradigm for 21st century medicine Translational Medicine of Aging. 2017;1:1–4 https://doi.org/10.1016/j.tma.2017.09.004

  6. Kaeberlein M. Lessons on longevity from budding yeast. Nature. 2010;464:513–9. https://doi.org/10.1038/nature08981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012;16:18–31. https://doi.org/10.1016/j.cmet.2012.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959;183:1751–2.

    Article  CAS  Google Scholar 

  9. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289(5487):2126–8.

    Article  CAS  Google Scholar 

  10. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. Faseb J. 2000;14:2135–7.

    Article  CAS  Google Scholar 

  11. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80.

    Article  CAS  Google Scholar 

  12. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2004;2(9):E296. https://doi.org/10.1371/journal.pbio.0020296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292(5515):288–90.

    Article  CAS  Google Scholar 

  14. Kaeberlein M, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193–6. https://doi.org/10.1126/science.1115535.

    Article  CAS  PubMed  Google Scholar 

  15. Kirchman PA, Kim S, Lai CY, Jazwinski SM. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics. 1999;152:179–90.

    Article  CAS  Google Scholar 

  16. Lai CY, Jaruga E, Borghouts C, Jazwinski SM. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics. 2002;162(1):73–87.

    Article  CAS  Google Scholar 

  17. Miceli MV, Jiang JC, Tiwari A, Rodriguez-Quinones JF, Jazwinski SM. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front Genet. 2011;2:102. https://doi.org/10.3389/fgene.2011.00102.

    Article  PubMed  Google Scholar 

  18. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. 2009;137(7):1247-1258 S0092 8674(09)00402 4. https://doi.org/10.1016/j.cell.2009.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell. 2020;180(296–310): e218. https://doi.org/10.1016/j.cell.2019.12.035.

    Article  CAS  Google Scholar 

  20. Delaney JR, et al. Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell. 2013;12(1):156–66. https://doi.org/10.1111/acel.12032.

    Article  CAS  PubMed  Google Scholar 

  21. Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 2012;492:261–5. https://doi.org/10.1038/nature11654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henderson KA, Hughes AL, Gottschling DE. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast eLife. 2014;3:e03504. https://doi.org/10.7554/eLife.03504.

  23. Chen KL, et al. Loss of vacuolar acidity results in iron-sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. Geroscience. 2020. https://doi.org/10.1007/s11357-020-00159-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murakami C, et al. pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle. 2012;11(16):3087–96. https://doi.org/10.4161/cc.21465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mouton SN et al. (2020) A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast eLife 9. https://doi.org/10.7554/eLife.54707

  26. Kruegel U, et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011;7: e1002253. https://doi.org/10.1371/journal.pgen.1002253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao Y, et al. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet. 2015;11(1):e1004968. https://doi.org/10.1371/journal.pgen.1004968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu Z et al. (2018) Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan eLife 7 https://doi.org/10.7554/eLife.35551

  29. Aris JP, et al. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol. 2013;48:1107–19. https://doi.org/10.1016/j.exger.2013.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinclair DA, Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 1997;91(7):1033–42.

    Article  CAS  Google Scholar 

  31. Crane MM et al. (2019) DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging eLife 8. https://doi.org/10.7554/eLife.50778

  32. Myers A, Lithgow GJ. Drugs that target aging: how do we discover them? Expert Opin Drug Discov. 2019;14(6):541–8. https://doi.org/10.1080/17460441.2019.1597049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barardo D, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017;16:594–7. https://doi.org/10.1111/acel.12585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tacutu R, et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 2018;46:D1083–90. https://doi.org/10.1093/nar/gkx1042.

    Article  CAS  PubMed  Google Scholar 

  35. Lee MB, et al. A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. Geroscience. 2017;39:419–28. https://doi.org/10.1007/s11357-017-9988-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://doi.org/10.1111/j.1365-2958.2008.06292.x.

    Article  CAS  PubMed  Google Scholar 

  37. Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan. 2012;1:9. https://doi.org/10.1186/2046-2395-1-9

  38. Bridi JC, Barros AG, Sampaio LR, Ferreira JC, Antunes Soares FA, Romano-Silva MA. Lifespan extension induced by caffeine in Caenorhabditis elegans is partially dependent on adenosine signaling. Front Aging Neurosci. 2015;7:220. https://doi.org/10.3389/fnagi.2015.00220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calvert S, Tacutu R, Sharifi S, Teixeira R, Ghosh P, de Magalhaes JP. A networkpharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell. 2016;15:256–66. https://doi.org/10.1111/acel.12432.

    Article  CAS  PubMed  Google Scholar 

  40. Brown MK, Evans JL, Luo Y. Beneficial effects of natural antioxidants EGCG andalpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav. 2006;85:620–8. https://doi.org/10.1016/j.pbb.2006.10.017.

    Article  CAS  PubMed  Google Scholar 

  41. Benedetti MG, et al. Compounds that confer thermal stress resistance and extendedlifespan. Exp Gerontol. 2008;43:882–91. https://doi.org/10.1016/j.exger.2008.08.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bauer JH, Goupil S, Garber GB, Helfand SL. An accelerated assay for theidentification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci USA. 2004;101:12980–5. https://doi.org/10.1073/pnas.0403493101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR. Withania somnifera rootextract extends lifespan of Caenorhabditis elegans. Ann Neurosci. 2013;20:13–6. https://doi.org/10.5214/ans.0972.7531.200106.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dang Y, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell. 2020;19(1):e13060. https://doi.org/10.1111/acel.13060.

    Article  CAS  PubMed  Google Scholar 

  45. Navrotskaya VV, Oxenkrug G, Vorobyova LI, Summergrad P. Berberine Prolongs Life Span andStimulates Locomotor Activity of Drosophila melanogaster. Am J Plant Sci. 2012;3:1037–40. https://doi.org/10.4236/ajps.2012.327123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jung S-K, Aleman-Meza B, Riepe C, Zhong W. QuantWorm: A Comprehensive SoftwarePackage for Caenorhabditis elegans Phenotypic Assays. PLOS ONE. 2014;9:e84830. https://doi.org/10.1371/journal.pone.0084830.

  47. Lee J-H, et al. Effects of ginsenosides, active ingredients of Panax ginseng, ondevelopment, growth, and life span of Caenorhabditis elegans. Biol Pharm Bull. 2007;30:2126–34.

    Article  CAS  Google Scholar 

  48. Weimer S, et al. D-Glucosamine supplementation extends life span of nematodesand of ageing mice. Nat Commun. 2014;5:1–12.

    Article  Google Scholar 

  49. Abbas S, Wink M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Medica. 2009;75:216.

    Article  CAS  Google Scholar 

  50. Lopez T, Schriner SE, Okoro M, Lu D, Chiang BT, Huey J, Jafari M. Green teapolyphenols extend the lifespan of male drosophila melanogaster while impairingreproductive fitness. J Med Food. 2014;17:1314–21.

    Article  CAS  Google Scholar 

  51. Wagner AE, et al. Epigallocatechin gallate affects glucose metabolism andincreases fitness and lifespan in Drosophila melanogaster. Oncotarget. 2015;6:30568.

    Article  Google Scholar 

  52. Strong R, et al. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of geneticallyheterogeneous mice. The journals of gerontology Series A, Biological sciencesand medical sciences. 2013;68:6–16. https://doi.org/10.1093/gerona/gls070.

    Article  CAS  Google Scholar 

  53. Sun K, Xiang L, Ishihara S, Matsuura A, Sakagami Y, Qi J. Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression. Bioscience, Biotechnology, and Biochemistry. 2012;1202232809–1202232809

  54. Reigada I, Moliner C, Valero MS, Weinkove D, Langa E, Gómez Rincón C. Antioxidantand antiaging effects of licorice on the Caenorhabditis elegans model. JMed Food. 2019;23:72–8. https://doi.org/10.1089/jmf.2019.0081.

    Article  CAS  Google Scholar 

  55. Zhang Z, Han S, Wang H, Wang T. Lutein extends the lifespan of Drosophila melanogaster. Arch Gerontol Geriatr. 2014;58:153–9.

    Article  CAS  Google Scholar 

  56. Kumar J, Park KC, Awasthi A, Prasad B. Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS & Neurological DisordersDrug Targets. 2015;14:295–302. https://doi.org/10.2174/1871527314666150116110212.

    Article  CAS  Google Scholar 

  57. Oh S-I, Park J-K, Park S-K. Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics. 2015;70:380–6.

    Article  Google Scholar 

  58. Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity andstress-resistance of 3 Drosophila species with different lifespans. Aging. 2018;10:2428–58. https://doi.org/10.18632/aging.101561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brack C, Bechter-Thuring E, Labuhn M. N-acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci. 1997;53:960–6.

    CAS  PubMed  Google Scholar 

  60. Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction andN-acetyl-L-cysteine in genetically heterogeneous mice. The Journals ofGerontology Series A, Biological Sciences and Medical Sciences. 2010;65:1275–84. https://doi.org/10.1093/gerona/glq155.

    Article  CAS  Google Scholar 

  61. Kampkötter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, Wätjen W. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2008;149:314–23. https://doi.org/10.1016/j.cbpb.2007.10.004.

    Article  CAS  PubMed  Google Scholar 

  62. Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CE. Quercetin mediatedlifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology. 2009;10:565–78.

    Article  CAS  Google Scholar 

  63. Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A (2016) Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster Front Pharmacol 7:505. https://doi.org/10.3389/fphar.2016.00505

  64. Chattopadhyay D, Chitnis A, Talekar A, Mulay P, Makkar M, James J, Thirumurugan K. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster. Biogerontology. 2017;18:397–411. https://doi.org/10.1007/s10522-017-9700-1.

    Article  CAS  PubMed  Google Scholar 

  65. Li S, Li J, Pan R, Cheng J, Cui Q, Chen J, Yuan Z. Sodium rutin extends lifespan and health span in mice including positive impacts on liver health. Br J Pharmacol. 2021. https://doi.org/10.1111/bph.15410.

  66. Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. BioMed Res Int. 2014.

  67. Cañuelo A, Gilbert-López B, Pacheco-Liñán P, Martínez-Lara E, Siles E, Miranda-VizueteA,. Tyrosol, a main phenol present in extra virgin olive oil, increaseslifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev. 2012;133:563–74. https://doi.org/10.1016/j.mad.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  68. PatelP Julien J-P, Kriz J. Early-Stage treatment with withaferin a reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217–33. https://doi.org/10.1007/s13311-014-0311-0.

    Article  CAS  Google Scholar 

  69. Koval L, Zemskaya N, Aliper A, Zhavoronkov A, Moskalev A. Evaluation of thegeroprotective effects of withaferin A in Drosophila melanogaster. Aging. 2021;13:1817–41. https://doi.org/10.18632/aging.202572.

  70. McCubrey JA, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017;9(6):1477–536. https://doi.org/10.18632/aging.101250.

    Article  CAS  Google Scholar 

  71. Westerheide SD, et al. Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem. 2004;279:56053–60. https://doi.org/10.1074/jbc.M409267200.

    Article  CAS  PubMed  Google Scholar 

  72. Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2:246–54. https://doi.org/10.1159/000090364.

    Article  CAS  PubMed  Google Scholar 

  73. Chellappa K, Perron IJ, Naidoo N, Baur JA. The leptin sensitizer celastrol reduces age-associated obesity and modulates behavioral rhythms. Aging Cell. 2019;18: e12874. https://doi.org/10.1111/acel.12874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahmad F, Khalid P, Khan MM, Chaubey M, Rastogi AK, Kidwai JR. Hypoglycemie activity of Pterocarpus marsupium wood. J Ethnopharmacol. 1991;35:71–5.

    Article  CAS  Google Scholar 

  75. Maruthupandian A, Mohan V (2011) Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats Int J Pharm Tech Res 3:1681–1687

  76. Halagappa K, Girish HN, Srinivasan BP. The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-α in type 2 diabetic rats. Indian J Pharmacol. 2010;42(6):392–6. https://doi.org/10.4103/0253-7613.71922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maurya R, Singh R, Deepak M, Handa SS, Yadav PP, Mishra PK. Constituents of Pterocarpus marsupium: an ayurvedic crude drug. Phytochemistry. 2004;65:915–20. https://doi.org/10.1016/j.phytochem.2004.01.021.

    Article  CAS  PubMed  Google Scholar 

  78. Devgun M, Nanda A, Ansari SH (2009) Pterocarpus marsupium roxb. - a comprehensive review Phcog Rev 3:359–363

  79. Tiwari M, Sharma M, Khare HN. Chemical constituents and medicinal uses of Pterocarpus marsupium roxb. Flora and Fauna. 2015;21:55–9.

    Google Scholar 

  80. Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. BioFactors. 2018;44:69–82. https://doi.org/10.1002/biof.1400.

    Article  CAS  PubMed  Google Scholar 

  81. Si H, Lai CQ, Liu D (2019) Dietary epicatechin, a novel anti-aging bioactive small molecule Current medicinal chemistry. https://doi.org/10.2174/0929867327666191230104958

  82. Si H, et al. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J Nutr. 2011;141:1095–100. https://doi.org/10.3945/jn.110.134270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartholome A, Kampkotter A, Tanner S, Sies H, Klotz LO. Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch Biochem Biophys. 2010;501(1):58–64. https://doi.org/10.1016/j.abb.2010.05.024.

    Article  CAS  PubMed  Google Scholar 

  84. Massie HR, Aiello VR, Williams TR. Inhibition of iron absorption prolongs the life span of Drosophila. Mech Ageing Dev. 1993;67:227–37. https://doi.org/10.1016/0047-6374(93)90001-8.

    Article  CAS  PubMed  Google Scholar 

  85. Liu M, et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem. 2010;285:36387–94. https://doi.org/10.1074/jbc.M110.169284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Demidenko ZN, Blagosklonny MV. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle. 2009;8(12):1901–4. https://doi.org/10.4161/cc.8.12.8810.

    Article  CAS  PubMed  Google Scholar 

  87. Mao L, et al. Berberine decelerates glucose metabolism via suppression of mTOR-dependent HIF-1α protein synthesis in colon cancer cells. Oncol Rep. 2018;39(5):2436–42. https://doi.org/10.3892/or.2018.6318.

    Article  CAS  PubMed  Google Scholar 

  88. Qin H, Dan M, Sha S, Shanshan F, Lin W, Ming D. ERK-dependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis. J Mol Endocrinol. 2016;57:251–60. https://doi.org/10.1530/JME-16-0139.

    Article  Google Scholar 

  89. Wang N, Feng Y, Zhu M, Tsang C, Man K, Tong Y, Tsao S. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem. 2010;111:1426–36.

    Article  CAS  Google Scholar 

  90. Wu T-J, Wang X, Zhang Y, Meng L, Kerrigan JE, Burley SK, Zheng XFS. Identification of a non-gatekeeper hot spot for drug-resistant mutations in mTOR kinase. Cell Rep. 2015;11:446–59. https://doi.org/10.1016/j.celrep.2015.03.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakashima A, Tamanoi F (2010) Conservation of the Tsc/Rheb/TORC1/S6K/S6 signaling in fission yeast Enzymes 28:167–187. https://doi.org/10.1016/S1874-6047(10)28008-3

  92. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90. https://doi.org/10.1042/BJ20080281.

    Article  CAS  PubMed  Google Scholar 

  93. Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DLJ, Gruenbaum Y. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc Natil Acad Sci USA. 2016;113(32):E4620–9. https://doi.org/10.1073/pnas.1512156113.

    Article  CAS  Google Scholar 

  94. Howitz KT, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6. https://doi.org/10.1038/nature01960.

    Article  CAS  PubMed  Google Scholar 

  95. Kaeberlein M, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45. https://doi.org/10.1074/jbc.M500655200.

    Article  CAS  PubMed  Google Scholar 

  96. Miller RA, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66(2):191–201. https://doi.org/10.1093/gerona/glq178.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang L, Jie G, Zhang J, Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 2009;46:414–21. https://doi.org/10.1016/j.freeradbiomed.2008.10.041.

    Article  CAS  PubMed  Google Scholar 

  98. Basu A, Lucas EA. Mechanisms and effects of green tea on cardiovascular health. Nutr Rev. 2007;65:361–75. https://doi.org/10.1111/j.1753-4887.2007.tb00314.x.

    Article  PubMed  Google Scholar 

  99. Yang CS, Wang X. Green tea and cancer prevention. Nutr Cancer. 2010;62(2):931–7. https://doi.org/10.1080/01635581.2010.509536.

    Article  CAS  PubMed  Google Scholar 

  100. Yuan X, et al. Green tea liquid consumption alters the human intestinal and oral microbiome. Mol Nutr Food Res. 2018;62:1800178. https://doi.org/10.1002/mnfr.201800178.

    Article  CAS  PubMed Central  Google Scholar 

  101. Chen T, et al. Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Mol Nutr Food Res. 2019;63:1801064. https://doi.org/10.1002/mnfr.201801064.

    Article  CAS  Google Scholar 

  102. Nash AK, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153. https://doi.org/10.1186/s40168-017-0373-4.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–32. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  104. Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M. A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci. 2008;63:113–21.

    Article  Google Scholar 

  105. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M. A molecular mechanism of chronological aging in yeast. Cell Cycle. 2009;8:1256–70. https://doi.org/10.4161/cc.8.8.8287.

    Article  CAS  PubMed  Google Scholar 

  106. Murakami CJ, Wall V, Basisty N, Kaeberlein M. Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS ONE. 2011;6: e24530. https://doi.org/10.1371/journal.pone.0024530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Olsen B, Murakami CJ, Kaeberlein M (2010) YODA: software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast BMC bioinformatics 11:141. https://doi.org/10.1186/1471-2105-11-141

  108. Steffen KK, Kennedy BK, Kaeberlein M. Measuring replicative life span in the budding yeast Journal of visualized experiments. JoVE. 2009;25(28):1209. https://doi.org/10.3791/1209.

    Article  Google Scholar 

  109. Beaupere C, et al. Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proc Natl Acad Sci U S A. 2018;115:9586–91. https://doi.org/10.1073/pnas.1804264115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the University of Washington Nathan Shock Center of Excellence in the Basic Biology of Aging Invertebrate Longevity and Healthspan Core (NIH P30AG013280) and a grant to MK from USANA Health Sciences. M.B.L. was supported by the National Institutes of Health (NIH) Alzheimer’s Disease Training Program (NIH T32 AG052354), the Howard Hughes Medical Institute (HHMI) Gilliam Fellowship for Advanced Study, the NIH Cellular and Molecular Biology training grant (NIH T32 GM727039), and the University of Washington Graduate Opportunities and Minority Achievement Program (UW GO-MAP) Bank of America Fellowship. M.G.K. was supported by NIH award R01AG056359 and the Biological Mechanisms of Healthy Aging Training Program (NIH T32 AG066574). D.P. was supported in part by NIH award R01AG049494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2701 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.B., Kiflezghi, M.G., Tsuchiya, M. et al. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 43, 2595–2609 (2021). https://doi.org/10.1007/s11357-021-00418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00418-x

Keywords

Navigation