Skip to main content
Log in

University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging

GeroScience Aims and scope Submit manuscript

Cite this article

Abstract

The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith DL Jr, Barry RJ, Powell ML, Nagy TR, D’Abramo LR, Watts SA. Dietary protein source influence on body size and composition in growing zebrafish. Zebrafish. 2013;10(3):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siccardi AJ 3rd, Padgett-Vasquez S, Garris HW, Nagy TR, D’Abramo LR, Watts SA. Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research. Zebrafish. 2010;7(3):267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Cope MB, Johnson MS, Smith DL Jr, Nagy TR. Mild calorie restriction induces fat accumulation in female C57BL/6J mice. Obesity. 2010;18(3):456–62.

    Article  PubMed  Google Scholar 

  5. Secor SM, Nagy TR. Non-invasive measure of body composition of snakes using dual-energy X-ray absorptiometry. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(2):379–89.

    Article  PubMed  Google Scholar 

  6. Warner DA, Johnson MS, Nagy TR. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J Exp Zool A Ecol Genet Physiol. 2016;325(9):588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson MS, Watts RJ, Hammer HS, Nagy TR, Watts SA. Validation of dual-energy X-ray absorptiometry to predict body composition of channel catfish Ictalurus punctatus. J World Aquac Soc. 2017;48(1):122–31.

    Article  PubMed  Google Scholar 

  8. Smith DL Jr, Yang Y, Hu HH, Zhai G, Nagy TR. Measurement of interscapular brown adipose tissue of mice in differentially housed temperatures by chemical-shift-encoded water-fat MRI. J Magn Reson Imaging. 2013;38(6):1425–33.

    Article  PubMed  Google Scholar 

  9. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2014;2:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chacko BK, Kramer PA, Ravi S, et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest. 2013;93(6):690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kramer PA, Chacko BK, Ravi S, Johnson MS, Mitchell T, Darley-Usmar VM. Bioenergetics and the oxidative burst: protocols for the isolation and evaluation of human leukocytes and platelets. J Vis Exp. 2014;(85):51301.

  12. Ravi S, Mitchell T, Kramer PA, Chacko B, Darley-Usmar VM. Mitochondria in monocytes and macrophages-implications for translational and basic research. Int J Biochem Cell Biol. 2014;53:202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol. 2014;2:82–90.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J. Autophagy and Mitophagy in Cellular Damage Control. Redox Biol. 2013;1(1):19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol. 2014;53C:127–33.

    Article  Google Scholar 

  16. Kesterson RA, Johnson LW, Lambert LJ, Vivian JL, Welch DR, Ballinger SW. Generation of mitochondrial-nuclear eXchange Mice via Pronuclear Transfer. Bio Protoc. 2016;6(20):e1976.

  17. Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA. Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp. 2010;(46):2511.

  18. Dranka BP, Benavides GA, Diers AR, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011;51(9):1621–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc. 2014;9(2):421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med. 2014;71:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393(12):1485–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Acin-Perez R, Benador HY, Petcherski A, et al. A novel approach to measure mitochondrial respiration in previously frozen biological samples. EMBO J. 2020;39(13):e104073.

  23. Chacko BK, Smith MR, Johnson MS, et al. Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. Redox Biol. 2019;22:101165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol. 2018;17:59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodson M, Wani WY, Redmann M, et al. Regulation of autophagy, mitochondrial dynamics and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy. 2017;13(11):1828–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Redmann M, Benavides GA, Berryhill TF, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol. 2016;11:73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dodson M, Liang Q, Johnson MS, et al. Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuroblastoma cells. Autophagy. 2013;9(12):1996–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giordano S, Dodson M, Ravi S, et al. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. J Neurochem. 2014;131(5):625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts LJ, Milne GL. Isoprostanes. J Lipid Res. 2009;50 Suppl(Suppl):S219–23.

  32. Prasain JK, Arabshahi A, Taub PR, et al. Simultaneous quantification of F2-isoprostanes and prostaglandins in human urine by liquid chromatography tandem-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;913–914:161–8.

    Article  PubMed  Google Scholar 

  33. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442(3):453–64.

    Article  CAS  PubMed  Google Scholar 

  34. Boyer-Guittaut M, Poillet L, Liang Q, et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy. 2014;10(6):986–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koike M, Shibata M, Waguri S, et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol. 2005;167(6):1713–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uppal K, Ma C, Go YM, Jones DP, Wren J. xMWAS: a data-driven integration and differential network analysis tool. Bioinformatics. 2018;34(4):701–2.

    Article  CAS  PubMed  Google Scholar 

  37. Go YM, Fernandes J, Hu X, Uppal K, Jones DP. Mitochondrial network responses in oxidative physiology and disease. Free Rad Biol Med. 2018;116:31–40.

    Article  CAS  PubMed  Google Scholar 

  38. Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem. 2019;401(1):3–29.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fetterman JL, Zelickson BR, Johnson LW, et al. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochem J. 2013;455(2):157–67.

    Article  CAS  PubMed  Google Scholar 

  40. Feeley KP, Bray AW, Westbrook DG, et al. Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Res. 2015;75(20):4429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunham-Snary KJ, Sandel MW, Sammy MJ, et al. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMed. 2018;36:316–28.

    Article  Google Scholar 

  42. Kandasamy J, Rezonzew G, Jilling T, Ballinger SW, Ambalavanan N. Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2019;317(6):L740–7.

  43. Dunham-Snary KJ, Ballinger SW. GENETICS Mitochondrial-nuclear DNA mismatch matters. Science. 2015;349(6255):1449–50.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fetterman JL, Ballinger SW. Mitochondrial genetics regulate nuclear gene expression through metabolites. Proc Natl Acad Sci U S A. 2019;116(32):15763–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu X, Gimsa U, Wester-Rosenlof L, et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 2009;19(1):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015;24(Pt A):29–39.

    Article  CAS  PubMed  Google Scholar 

  49. Venereau E, Ceriotti C, Bianchi ME. DAMPs from Cell Death to New Life. Front Immunol. 2015;6:422.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brown AW, Kaiser KA, Allison DB. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci U S A. 2018;115(11):2563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allison DB, Brown AW, George BJ, Kaiser KA. Reproducibility: a tragedy of errors. Nature. 2016;530(7588):27–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. CoRaRi S. Reproducibility and Replicability in Science. Washington: National Academies Press; 2019.

    Google Scholar 

  53. Casazza K, Hanks LJ, Beasley TM, Fernandez JR. Beyond thriftiness: independent and interactive effects of genetic and dietary factors on variations in fat deposition and distribution across populations. Am J Phys Anthropol. 2011;145(2):181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cope MB, Li X, Jumbo-Lucioni P, et al. Risperidone alters food intake, core body temperature, and locomotor activity in mice. Physiol Behav. 2009;96(3):457–63.

    Article  CAS  PubMed  Google Scholar 

  55. Klimentidis YC, Aissani B, Shriver MD, Allison DB, Shrestha S. Natural selection among Eurasians at genomic regions associated with HIV-1 control. BMC Evol Biol. 2011;11:173.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Willig AL, Hunter GR, Casazza K, Heimburger DC, Beasley TM, Fernandez JR. Body fat and racial genetic admixture are associated with aerobic fitness levels in a multiethnic pediatric population. Obesity. 2011;19(11):2222–7.

    Article  PubMed  Google Scholar 

  57. Klimentidis YC, Beasley TM, Lin HY, et al. Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics. Proc Biol Sci R Soc. 2011;278(1712):1626–32.

    Article  Google Scholar 

  58. Beasley TM. Tests of mediation: paradoxical decline in statistical power as a function of mediator collinearity. J Exp Educ. 2014;82(3):283–306.

    Article  PubMed  Google Scholar 

  59. Makowsky R, Beasley TM, Gadbury GL, Albert JM, Kennedy RE, Allison DB. Validity and power of missing data imputation for extreme sampling and terminal measures designs in mediation analysis. Front Genet. 2011;2:75.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ejima K, Pavela G, Li P, Allison DB. Generalized lambda distribution for flexibly testing differences beyond the mean in the distribution of a dependent variable such as body mass index. Int J Obes. 2018;42(4):930–3.

    Article  CAS  Google Scholar 

  61. Sarkis-Onofre R, Poletto-Neto V, Cenci MS, Moher D, Pereira-Cenci T. CONSORT endorsement improves the quality of reports of randomized clinical trials in dentistry. J Clin Epidemiol. 2020;122:20–6.

    Article  PubMed  Google Scholar 

  62. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Physiol. 2020;598(18):3793–801.

    Article  CAS  PubMed  Google Scholar 

  63. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Austad.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austad, S.N., Buford, T.W., Allison, D.B. et al. University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging . GeroScience 43, 2149–2160 (2021). https://doi.org/10.1007/s11357-021-00414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00414-1

Keywords

Navigation