Georges A, Booker JG. Traumatic Brain Injury. Treasure Island (FL): StatPearls; 2020.
Google Scholar
Jain S, Iverson LM. Glasgow Coma Scale. Treasure Island (FL): StatPearls; 2020.
Google Scholar
Irimia A, Maher AS, Rostowsky KA, Chowdhury NF, Hwang DH, Law EM. Brain segmentation from computed tomography of healthy aging and geriatric concussion at variable spatial resolutions. Front Neuroinform. 2019;13:9. https://doi.org/10.3389/fninf.2019.00009.
Article
PubMed
PubMed Central
Google Scholar
Rostowsky KA, Maher AS, Irimia A. Macroscale white matter alterations due to traumatic cerebral microhemorrhages are revealed by diffusion tensor imaging. Front Neurol. 2018;9:948. https://doi.org/10.3389/fneur.2018.00948.
Article
PubMed
PubMed Central
Google Scholar
Moretti L, Cristofori I, Weaver SM, Chau A, Portelli JN, Grafman J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol. 2012;11(12):1103–12. https://doi.org/10.1016/S1474-4422(12)70226-0.
Article
PubMed
Google Scholar
Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134(Pt 2):449–63. https://doi.org/10.1093/brain/awq347.
Thompson HJ, McCormick WC, Kagan SH. Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc. 2006;54(10):1590–5. https://doi.org/10.1111/j.1532-5415.2006.00894.x.
Article
PubMed
PubMed Central
Google Scholar
LeBlanc J, de Guise E, Gosselin N, Feyz M. Comparison of functional outcome following acute care in young, middle-aged and elderly patients with traumatic brain injury. Brain Inj. 2006;20(8):779–90. https://doi.org/10.1080/02699050600831835.
Article
PubMed
Google Scholar
Li Y, Li Y, Li X, Zhang S, Zhao J, Zhu X, et al. Head Injury as a risk factor for dementia and Alzheimer's Disease: a systematic review and meta-analysis of 32 observational studies. PLoS One. 2017;12(1):e0169650. https://doi.org/10.1371/journal.pone.0169650.
Washington PM, Villapol S, Burns MP. Polypathology and dementia after brain trauma: does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp Neurol. 2016;275(Pt 3):381–8. https://doi.org/10.1016/j.expneurol.2015.06.015.
Article
PubMed
Google Scholar
Edwards G 3rd, Moreno-Gonzalez I, Soto C. Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun. 2017;483(4):1137–42. https://doi.org/10.1016/j.bbrc.2016.07.123.
CAS
Article
PubMed
Google Scholar
Irimia A, Fan D, Chaudhari N, Ngo V, Zhang F, Joshi SH, et al. Mapping cerebral connectivity changes after mild traumatic brain injury in older adults using diffusion tensor imaging and Riemannian matching of elastic curves. In: Conference Proceedings of the 17th IEEE International Symposium on Biomedical Imaging. Iowa City, IA, USA: IEEE; 2020. p. 1690-1693.
Chen SQ, Kang Z, Hu XQ, Hu B, Zou Y. Diffusion tensor imaging of the brain in patients with Alzheimer's disease and cerebrovascular lesions. J Zhejiang Univ Sci B. 2007;8(4):242–7. https://doi.org/10.1631/jzus.2007.B0242.
Article
PubMed
PubMed Central
Google Scholar
Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59(3):2017–24. https://doi.org/10.1016/j.neuroimage.2011.10.050.
Article
PubMed
Google Scholar
Santhanam P, Wilson SH, Oakes TR, Weaver LK. Accelerated age-related cortical thinning in mild traumatic brain injury. Brain Behav. 2019;9(1):e01161. https://doi.org/10.1002/brb3.1161.
Article
PubMed
Google Scholar
Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain. 2007;130(Pt 4):1159–66. https://doi.org/10.1093/brain/awm016.
Article
PubMed
Google Scholar
Govindarajan KA, Narayana PA, Hasan KM, Wilde EA, Levin HS, Hunter JV, et al. Cortical thickness in mild traumatic brain injury. J Neurotrauma. 2016;33(20):1809–17. https://doi.org/10.1089/neu.2015.4253.
Irimia A, Maher AS, Chaudhari NN, Chowdhury NF, Jacobs EB. Acute cognitive deficits after traumatic brain injury predict Alzheimer's disease-like degradation of the human default mode network. Geroscience. 2020;42(5):1411-1429. doi:https://doi.org/10.1007/s11357-020-00245-6
Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22(4):439–50. https://doi.org/10.1002/jmri.20404.
Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9. https://doi.org/10.1212/WNL.0b013e3181cb3e25.
Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–88. https://doi.org/10.1016/S1053-8119(03)00336-7.
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–94. https://doi.org/10.1006/nimg.1998.0395.
CAS
Article
PubMed
Google Scholar
Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9(2):195–207. https://doi.org/10.1006/nimg.1998.0396.
CAS
Article
PubMed
Google Scholar
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021.
Article
PubMed
Google Scholar
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505. https://doi.org/10.1016/j.neuroimage.2006.02.024.
Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH Jr. Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp. 2010;31(3):378–90. https://doi.org/10.1002/hbm.20872.
Article
PubMed
Google Scholar
Kanaan RA, Allin M, Picchioni M, Barker GJ, Daly E, Shergill SS, et al. Gender differences in white matter microstructure. PLoS One. 2012;7(6):e38272. https://doi.org/10.1371/journal.pone.0038272.
Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061.
Article
PubMed
Google Scholar
Han H, Glenn AL, Dawson KJ. Evaluating alternative correction methods for multiple comparison in functional neuroimaging research. Brain Sci. 2019;9:8. https://doi.org/10.3390/brainsci9080198.
Article
Google Scholar
Wellek S. A new approach to equivalence assessment in standard comparative bioavailability trials by means of the Mann-Whitney statistic. Biometrical Journal. 1996;38(6):695–710. https://doi.org/10.1002/bimj.4710380608.
Article
Google Scholar
Walker E, Nowacki AS. Understanding equivalence and noninferiority testing. Journal of General Internal Medicine. 2011;26(2):192–6. https://doi.org/10.1007/s11606-010-1513-8.
Article
PubMed
Google Scholar
Hoffelder T, Gossl R, Wellek S. Multivariate equivalence tests for use in pharmaceutical development. Journal of Biopharmaceutical Statistics. 2015;25(3):417–37. https://doi.org/10.1080/10543406.2014.920344.
Article
PubMed
Google Scholar
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405(2):442–51. https://doi.org/10.1016/0005-2795(75)90109-9.
CAS
Article
PubMed
Google Scholar
Dall'Acqua P, Johannes S, Mica L, Simmen H-P, Glaab R, Fandino J, et al. Prefrontal cortical thickening after mild traumatic brain injury: a one-year magnetic resonance imaging study. Journal of Neurotrauma. 2017a;34(23):3270–9. https://doi.org/10.1089/neu.2017.5124.
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27. https://doi.org/10.1007/s11910-015-0545-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shao M, Cao J, Bai L, Huang W, Wang S, Sun C, et al. Preliminary evidence of sex differences in cortical thickness following acute mild traumatic brain injury. Front Neurol. 2018;9:878. https://doi.org/10.3389/fneur.2018.00878.
Ji F, Pasternak O, Liu S, Loke YM, Choo BL, Hilal S, et al. Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease. Alzheimers Res Ther. 2017;9(1):63. https://doi.org/10.1186/s13195-017-0292-4.
Hsu JL, Lee WJ, Liao YC, Lirng JF, Wang SJ, Fuh JL. Posterior atrophy and medial temporal atrophy scores are associated with different symptoms in patients with Alzheimer's disease and mild cognitive impairment. PLoS One. 2015;10(9):e0137121. https://doi.org/10.1371/journal.pone.0137121.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang B, Prastawa M, Awate SP, Irimia A, Chambers MC, Vespa PM, et al. Segmentation of serial MRIs of TBI patients using personalized atlas construction and topological change estimation. Proc IEEE Int Symp Biomed Imaging. 2012:1152–5. https://doi.org/10.1109/isbi.2012.6235764.
Irimia A, Torgerson CM, Goh SY, Van Horn JD. Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood. Brain Imaging Behav. 2015;9(4):678–89. https://doi.org/10.1007/s11682-014-9321-0.
Article
PubMed
PubMed Central
Google Scholar
Van Horn JD, Bhattrai A, Irimia A. Multimodal imaging of neurometabolic pathology due to traumatic brain injury. Trends in Neurosciences. 2017;40(1):39–59. https://doi.org/10.1016/j.tins.2016.10.007.
CAS
Article
PubMed
Google Scholar
Halgren E, Sherfey J, Irimia A, Dale AM, Marinkovic K. Sequential temporo-fronto-temporal activation during monitoring of the auditory environment for temporal patterns. Hum Brain Mapp. 2011;32(8):1260–76. https://doi.org/10.1002/hbm.21106.
Article
PubMed
Google Scholar
Irimia A, Van Horn JD. Functional neuroimaging of traumatic brain injury: advances and clinical utility. Neuropsychiatr Dis Treat. 2015;11:2355–65. https://doi.org/10.2147/NDT.S79174.
Article
PubMed
PubMed Central
Google Scholar
Irimia A, Van Horn JD. Epileptogenic focus localization in treatment-resistant post-traumatic epilepsy. Journal of Clinical Neuroscience. 2015;22(4):627–31.
Article
Google Scholar
Lima EA, Irimia A, Wikswo J. The magnetic inverse problem. In: Braginski AI, Clarke J, editors. The SQUID Handbook. Weinheim, Germany: Wiley-VCH; 2006. p. 139–267.
Chapter
Google Scholar
Irimia A, Goh SY, Torgerson CM, Chambers MC, Kikinis R, Van Horn JD. Forward and inverse electroencephalographic modeling in health and in acute traumatic brain injury. Clinical Neurophysiology. 2013;124(11):2129–45.
Article
Google Scholar
Irimia A, Bradshaw LA. Ellipsoidal electrogastrographic forward modelling. Phys Med Biol. 2005;50(18):4429–44. https://doi.org/10.1088/0031-9155/50/18/012.
Article
PubMed
Google Scholar
Irimia A, Richards WO, Bradshaw LA. Magnetogastrographic detection of gastric electrical response activity in humans. Phys Med Biol. 2006;51(5):1347–60. https://doi.org/10.1088/0031-9155/51/5/022.
Article
PubMed
Google Scholar
Irimia A. Electric field and potential calculation for a bioelectric current dipole in an ellipsoidl. Journal of Physics A: Mathematical and General. 2005;38(37):8123–38.
Article
Google Scholar
Eshkoor SA, Hamid TA, Mun CY, Ng CK. Mild cognitive impairment and its management in older people. Clin Interv Aging. 2015;10:687–93. https://doi.org/10.2147/CIA.S73922.
Article
PubMed
PubMed Central
Google Scholar
Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Thalamuthu A, Andrews G, et al. The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration. PLoS One. 2015;10(11):e0142388. https://doi.org/10.1371/journal.pone.0142388.
de Freitas Cardoso MG, Faleiro RM, de Paula JJ, Kummer A, Caramelli P, Teixeira AL, et al. Cognitive impairment following acute mild traumatic brain injury. Front Neurol. 2019;10:198. https://doi.org/10.3389/fneur.2019.00198.
Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303. https://doi.org/10.3171/jns.2005.103.2.0298.
Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA. Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil. 2001;82(10):1461–71. https://doi.org/10.1053/apmr.2001.25137.
CAS
Article
PubMed
Google Scholar
Mesfin FB, Gupta N, Hays Shapshak A, Taylor RS. Diffuse Axonal Injury (DAI). Treasure Island (FL): StatPearls; 2020.
Google Scholar
Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29. https://doi.org/10.1016/j.nurt.2007.05.011.
Article
PubMed
PubMed Central
Google Scholar
Alves GS, O'Dwyer L, Jurcoane A, Oertel-Knochel V, Knochel C, Prvulovic D, et al. Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients. PLoS One. 2012;7(12):e52859. https://doi.org/10.1371/journal.pone.0052859.
CAS
Article
PubMed
PubMed Central
Google Scholar
Amlien IK, Fjell AM. Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment. Neuroscience. 2014;276:206–15. https://doi.org/10.1016/j.neuroscience.2014.02.017.
CAS
Article
PubMed
Google Scholar
Chua TC, Wen W, Slavin MJ, Sachdev PS. Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review. Curr Opin Neurol. 2008;21(1):83–92. https://doi.org/10.1097/WCO.0b013e3282f4594b.
Article
PubMed
Google Scholar
Kim YJ, Kwon HK, Lee JM, Kim YJ, Kim HJ, Jung NY, et al. White matter microstructural changes in pure Alzheimer's disease and subcortical vascular dementia. Eur J Neurol. 2015;22(4):709–16. https://doi.org/10.1111/ene.12645.
Lee SH, Coutu JP, Wilkens P, Yendiki A, Rosas HD, Salat DH, et al. Tract-based analysis of white matter degeneration in Alzheimer's disease. Neuroscience. 2015;301:79–89. https://doi.org/10.1016/j.neuroscience.2015.05.049.
Bozzali M, Falini A, Franceschi M, Cercignani M, Zuffi M, Scotti G, et al. White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2002;72(6):742–6. https://doi.org/10.1136/jnnp.72.6.742.
Su E, Bell M. Diffuse Axonal Injury. In: Laskowitz D, Grant G, editors. Translational research in traumatic brain injury. Boca Raton (FL): Frontiers in Neuroscience; 2016.
Google Scholar
Vik A, Kvistad KA, Skandsen T, Ingebrigtsen T. Diffuse axonal injury in traumatic brain injury. Tidsskr Nor Laegeforen. 2006;126(22):2940–4.
PubMed
Google Scholar
Parizel PM, Ozsarlak, Van Goethem JW, van den Hauwe L, Dillen C, Verlooy J, et al. Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol. 1998;8(6):960–5. https://doi.org/10.1007/s003300050496.
CAS
Article
PubMed
Google Scholar
Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23(5):794–802.
PubMed
PubMed Central
Google Scholar
DeKosky ST, Asken BM. Injury cascades in TBI-related neurodegeneration. Brain Inj. 2017;31(9):1177–82. https://doi.org/10.1080/02699052.2017.1312528.
Article
PubMed
PubMed Central
Google Scholar
Geng X, Gouttard S, Sharma A, Gu H, Styner M, Lin W, et al. Quantitative tract-based white matter development from birth to age 2 years. Neuroimage. 2012;61(3):542–57. https://doi.org/10.1016/j.neuroimage.2012.03.057.
Gilmore JH, Lin W, Corouge I, Vetsa YS, Smith JK, Kang C, et al. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR Am J Neuroradiol. 2007;28(9):1789–95. https://doi.org/10.3174/ajnr.a0751.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang S, Ledig C, Hajnal JV, Counsell SJ, Schnabel JA, Deprez M. Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI. Sci Rep. 2019;9(1):12938. https://doi.org/10.1038/s41598-019-49350-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lye TC, Shores EA. Traumatic brain injury as a risk factor for Alzheimer's disease: a review. Neuropsychol Rev. 2000;10(2):115–29. https://doi.org/10.1023/a:1009068804787.
CAS
Article
PubMed
Google Scholar
Van Den Heuvel C, Thornton E, Vink R. Traumatic brain injury and Alzheimer's disease: a review. Prog Brain Res. 2007;161:303–16. https://doi.org/10.1016/S0079-6123(06)61021-2.
CAS
Article
Google Scholar
Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. Neuropsychology of traumatic brain injury: an expert overview. Rev Neurol (Paris). 2017;173(7-8):461–72. https://doi.org/10.1016/j.neurol.2017.07.006.
CAS
Article
PubMed
Google Scholar
Wang B, Liu W, Prastawa M, Irimia A, Vespa PM, van Horn JD, et al. 4d active cut: an interactive tool for pathological anatomy modeling. Proc IEEE Int Symp Biomed Imaging. 2014;2014:529–32. https://doi.org/10.1109/ISBI.2014.6867925.
Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2008;29(3):514–9. https://doi.org/10.3174/ajnr.A0856.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lepage C, de Pierrefeu A, Koerte IK, Coleman MJ, Pasternak O, Grant G, et al. White matter abnormalities in mild traumatic brain injury with and without post-traumatic stress disorder: a subject-specific diffusion tensor imaging study. Brain Imaging Behav. 2018;12(3):870–81. https://doi.org/10.1007/s11682-017-9744-5.
Parente DB, Gasparetto EL, da Cruz LC, Jr., Domingues RC, Baptista AC, Carvalho AC et al. Potential role of diffusion tensor MRI in the differential diagnosis of mild cognitive impairment and Alzheimer's disease. AJR Am J Roentgenol. 2008;190(5):1369–74. https://doi.org/10.2214/AJR.07.2617.
Naggara O, Oppenheim C, Rieu D, Raoux N, Rodrigo S, Dalla Barba G, et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry Res. 2006;146(3):243–9. https://doi.org/10.1016/j.pscychresns.2006.01.005.
Hinkebein JH, Martin TA, Callahan CD, Johnstone B. Traumatic brain injury and Alzheimer's: deficit profile similarities and the impact of normal ageing. Brain Inj. 2003;17(12):1035–42. https://doi.org/10.1080/0269905031000110490.
Article
PubMed
Google Scholar
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, et al. Functional and structural network recovery after mild traumatic brain injury: a 1-year longitudinal study. Front Hum Neurosci. 2017;11:280. https://doi.org/10.3389/fnhum.2017.00280.
Article
PubMed
PubMed Central
Google Scholar
Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer's disease. A critical review. Brain. 1999;122(Pt 3):383–404. https://doi.org/10.1093/brain/122.3.383.
Article
PubMed
Google Scholar
McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012;6(2):193–207. https://doi.org/10.1007/s11682-012-9173-4.
Article
PubMed
PubMed Central
Google Scholar
Cazalis F, Babikian T, Giza C, Copeland S, Hovda D, Asarnow RF. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth. Front Neurol. 2011;1:158. https://doi.org/10.3389/fneur.2010.00158.
Article
PubMed
PubMed Central
Google Scholar
Porcelli S, Van Der Wee N, van der Werff S, Aghajani M, Glennon JC, van Heukelum S, et al. Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev. 2019;97:10–33. https://doi.org/10.1016/j.neubiorev.2018.09.012.
Article
PubMed
Google Scholar
Lalonde G, Bernier A, Beaudoin C, Gravel J, Beauchamp MH. Investigating social functioning after early mild TBI: the quality of parent-child interactions. J Neuropsychol. 2018;12(1):1–22. https://doi.org/10.1111/jnp.12104.
Article
PubMed
Google Scholar
Temkin NR, Corrigan JD, Dikmen SS, Machamer J. Social functioning after traumatic brain injury. J Head Trauma Rehabil. 2009;24(6):460–7. https://doi.org/10.1097/HTR.0b013e3181c13413.
Article
PubMed
Google Scholar
Gomez-Hernandez R, Max JE, Kosier T, Paradiso S, Robinson RG. Social impairment and depression after traumatic brain injury. Arch Phys Med Rehabil. 1997;78(12):1321–6. https://doi.org/10.1016/s0003-9993(97)90304-x.
CAS
Article
PubMed
Google Scholar
Bediou B, Ryff I, Mercier B, Milliery M, Henaff MA, D'Amato T, et al. Impaired social cognition in mild Alzheimer disease. J Geriatr Psychiatry Neurol. 2009;22(2):130–40. https://doi.org/10.1177/0891988709332939.
Article
PubMed
Google Scholar
Gilmour G, Porcelli S, Bertaina-Anglade V, Arce E, Dukart J, Hayen A, et al. Relating constructs of attention and working memory to social withdrawal in Alzheimer's disease and schizophrenia: issues regarding paradigm selection. Neurosci Biobehav Rev. 2019;97:47–69. https://doi.org/10.1016/j.neubiorev.2018.09.025.
Calvillo M, Irimia A. Neuroimaging and psychometric assessment of mild cognitive impairment after traumatic brain injury. Front Psychol. 2020;11:1423. https://doi.org/10.3389/fpsyg.2020.01423.
Article
PubMed
PubMed Central
Google Scholar
Shaver TK, Ozga JE, Zhu B, Anderson KG, Martens KM, Vonder HC. Long-term deficits in risky decision-making after traumatic brain injury on a rat analog of the Iowa gambling task. Brain Res. 1704;2019:103–13. https://doi.org/10.1016/j.brainres.2018.10.004.
CAS
Article
Google Scholar
Ozga-Hess JE, Whirtley C, O'Hearn C, Pechacek K, Vonder HC. Unilateral parietal brain injury increases risk-taking on a rat gambling task. Exp Neurol. 2020;327:113217. https://doi.org/10.1016/j.expneurol.2020.113217.
Article
PubMed
PubMed Central
Google Scholar
Cotrena C, Branco LD, Zimmermann N, Cardoso CO, Grassi-Oliveira R, Fonseca RP. Impaired decision-making after traumatic brain injury: the Iowa Gambling Task. Brain Inj. 2014;28(8):1070–5. https://doi.org/10.3109/02699052.2014.896943.
Article
PubMed
Google Scholar
Levin HS, Wilde E, Troyanskaya M, Petersen NJ, Scheibel R, Newsome M, et al. Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma. 2010;27(4):683–94. https://doi.org/10.1089/neu.2009.1073.
Sinha S, Tiwari SC, Shah S, Singh P, Tripathi SM, Pandey N, et al. Neural bases of impaired decision making process in Alzheimer's disease. Society of Applied Neurosciences 2016; 6 Oct - 9 Oct. Corfu, Greece: Frontiers; 2016.
Google Scholar
Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967–73. https://doi.org/10.3174/ajnr.A0970.
Yin B, Li DD, Huang H, Gu CH, Bai GH, Hu LX, et al. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome. Front Neural Circuits. 2019;13:28. https://doi.org/10.3389/fncir.2019.00028.
Alhilali LM, Yaeger K, Collins M, Fakhran S. Detection of central white matter injury underlying vestibulopathy after mild traumatic brain injury. Radiology. 2014;272(1):224–32. https://doi.org/10.1148/radiol.14132670.
Article
PubMed
Google Scholar
Duering M, Gesierich B, Seiler S, Pirpamer L, Gonik M, Hofer E, et al. Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology. 2014;82(22):1946–50. https://doi.org/10.1212/WNL.0000000000000475.
McInnes K, Friesen CL, MacKenzie DE, Westwood DA, Boe SG. Mild traumatic brain injury (mTBI) and chronic cognitive impairment: a scoping review. PLoS One. 2017;12(4):e0174847. https://doi.org/10.1371/journal.pone.0174847.
CAS
Article
PubMed
PubMed Central
Google Scholar
Konrad C, Geburek AJ, Rist F, Blumenroth H, Fischer B, Husstedt I, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol Med. 2011;41(6):1197–211. https://doi.org/10.1017/S0033291710001728.
Johansson B, Andrell P, Ronnback L, Mannheimer C. Follow-up after 5.5 years of treatment with methylphenidate for mental fatigue and cognitive function after a mild traumatic brain injury. Brain Inj. 2020;34(2):229–35. https://doi.org/10.1080/02699052.2019.1683898.
Article
PubMed
Google Scholar
Mathias JL, Beall JA, Bigler ED. Neuropsychological and information processing deficits following mild traumatic brain injury. J Int Neuropsychol Soc. 2004;10(2):286–97. https://doi.org/10.1017/S1355617704102117.
Article
PubMed
Google Scholar
Jonasson A, Levin C, Renfors M, Strandberg S, Johansson B. Mental fatigue and impaired cognitive function after an acquired brain injury. Brain Behav. 2018;8(8):e01056. https://doi.org/10.1002/brb3.1056.
Article
PubMed
PubMed Central
Google Scholar
Belmont A, Agar N, Azouvi P. Subjective fatigue, mental effort, and attention deficits after severe traumatic brain injury. Neurorehabil Neural Repair. 2009;23(9):939–44. https://doi.org/10.1177/1545968309340327.
Article
PubMed
Google Scholar
Ziino C, Ponsford J. Selective attention deficits and subjective fatigue following traumatic brain injury. Neuropsychology. 2006;20(3):383–90. https://doi.org/10.1037/0894-4105.20.3.383.
Article
PubMed
Google Scholar
Hillary FG, Genova HM, Medaglia JD, Fitzpatrick NM, Chiou KS, Wardecker BM, et al. The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging Behav. 2010;4(2):141–54. https://doi.org/10.1007/s11682-010-9094-z.
Nestor PG, Parasuraman R, Haxby JV. Speed of information processing and attention in early Alzheimer's dementia. Dev Neuropsychol. 2009;7(2):243–56. https://doi.org/10.1080/87565649109540491.
Article
Google Scholar
Warkentin S, Erikson C, Janciauskiene S. rCBF pathology in Alzheimer's disease is associated with slow processing speed. Neuropsychologia. 2008;46(5):1193–200. https://doi.org/10.1016/j.neuropsychologia.2007.08.029.
CAS
Article
PubMed
Google Scholar
Croall ID, Cowie CJ, He J, Peel A, Wood J, Aribisala BS, et al. White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology. 2014;83(6):494–501. https://doi.org/10.1212/WNL.0000000000000666.
Article
PubMed
PubMed Central
Google Scholar
Kircher T, Nagels A, Kirner-Veselinovic A, Krach S. Neural correlates of rhyming vs. lexical and semantic fluency. Brain Res. 2011;1391:71–80. https://doi.org/10.1016/j.brainres.2011.03.054.
CAS
Article
PubMed
Google Scholar
Paek EJ, Murray LL, Newman SD. Neural correlates of verb fluency performance in cognitively healthy older adults and individuals with dementia: a pilot fMRI study. Front Aging Neurosci. 2020;12:73. https://doi.org/10.3389/fnagi.2020.00073.
Article
PubMed
PubMed Central
Google Scholar
Kave G, Heled E, Vakil E, Agranov E. Which verbal fluency measure is most useful in demonstrating executive deficits after traumatic brain injury? J Clin Exp Neuropsychol. 2011;33(3):358–65. https://doi.org/10.1080/13803395.2010.518703.
Article
PubMed
Google Scholar
Henry JD, Crawford JR. A meta-analytic review of verbal fluency performance in patients with traumatic brain injury. Neuropsychology. 2004;18(4):621–8. https://doi.org/10.1037/0894-4105.18.4.621.
Article
PubMed
Google Scholar
Mathias JL, Coats JL. Emotional and cognitive sequelae to mild traumatic brain injury. J Clin Exp Neuropsychol. 1999;21(2):200–15. https://doi.org/10.1076/jcen.21.2.200.930.
CAS
Article
PubMed
Google Scholar
Voller B, Benke T, Benedetto K, Schnider P, Auff E, Aichner F. Neuropsychological, MRI and EEG findings after very mild traumatic brain injury. Brain Inj. 1999;13(10):821–7. https://doi.org/10.1080/026990599121214.
CAS
Article
PubMed
Google Scholar
Henry JD, Crawford JR, Phillips LH. Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. Neuropsychologia. 2004;42(9):1212–22. https://doi.org/10.1016/j.neuropsychologia.2004.02.001.
Article
PubMed
Google Scholar
Kljajevic V. Verbal fluency and intrinsic brain activity in Alzheimer's disease. Croat Med J. 2015;56(6):573–7. https://doi.org/10.3325/cmj.2015.56.573.
Article
PubMed
PubMed Central
Google Scholar
Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA, Sultzer DL. The neural correlates of naming and fluency deficits in Alzheimer's disease: an FDG-PET study. Int J Geriatr Psychiatry. 2009;24(8):885–93. https://doi.org/10.1002/gps.2229.
Article
PubMed
PubMed Central
Google Scholar
Brun A, Englund E. Regional pattern of degeneration in Alzheimer's disease: neuronal loss and histopathological grading. Histopathology. 1981;5(5):549–64. https://doi.org/10.1111/j.1365-2559.1981.tb01818.x.
CAS
Article
PubMed
Google Scholar
Collette F, Van der Linden M, Salmon E. Executive dysfunction in Alzheimer's disease. Cortex. 1999;35(1):57–72. https://doi.org/10.1016/s0010-9452(08)70785-8.
CAS
Article
PubMed
Google Scholar
Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M, Casagrande M. Executive functions in Alzheimer Disease: a systematic review. Front Aging Neurosci. 2018;10:437. https://doi.org/10.3389/fnagi.2018.00437.
Article
PubMed
Google Scholar
Ozga JE, Povroznik JM, Engler-Chiurazzi EB, Vonder HC. Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol. 2018;29(7):617–37. https://doi.org/10.1097/FBP.0000000000000430.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cossette I, Gagne ME, Ouellet MC, Fait P, Gagnon I, Sirois K, et al. Executive dysfunction following a mild traumatic brain injury revealed in early adolescence with locomotor-cognitive dual-tasks. Brain Inj. 2016;30(13-14):1648–55. https://doi.org/10.1080/02699052.2016.1200143.
Article
PubMed
Google Scholar
Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 2008;22(2):115–22. https://doi.org/10.1080/02699050801888816.
Article
PubMed
Google Scholar
Shum D, Gill H, Banks M, Maujean A, Griffin J, Ward H. Planning ability following moderate to severe traumatic brain injury: performance on a 4-disk version of the Tower of London. Brain Impairment. 2009;10(3):320–4. https://doi.org/10.1375/brim.10.3.320.
Article
Google Scholar
Brooks J, Fos LA, Greve KW, Hammond JS. Assessment of executive function in patients with mild traumatic brain injury. J Trauma. 1999;46(1):159–63. https://doi.org/10.1097/00005373-199901000-00027.
CAS
Article
PubMed
Google Scholar
Lange KW, Sahakian BJ, Quinn NP, Marsden CD, Robbins TW. Comparison of executive and visuospatial memory function in Huntington's disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry. 1995;58(5):598–606. https://doi.org/10.1136/jnnp.58.5.598.
CAS
Article
PubMed
PubMed Central
Google Scholar
Satler C, Guimaraes L, Tomaz C. Planning ability impairments in probable Alzheimer's disease patients: evidence from the Tower of London test. Dement Neuropsychol. 2017;11(2):137–44. https://doi.org/10.1590/1980-57642016dn11-020006.
Article
PubMed
PubMed Central
Google Scholar
Mack JL, Patterson MB. Executive dysfunction and Alzheimer's disease: performance on a test of planning ability, the Porteus Maze Test. Neuropsychology. 1995;9(4):556–64. https://doi.org/10.1037/0894-4105.9.4.556.
Article
Google Scholar
Marco EJ, Harrell KM, Brown WS, Hill SS, Jeremy RJ, Kramer JH, et al. Processing speed delays contribute to executive function deficits in individuals with agenesis of the corpus callosum. J Int Neuropsychol Soc. 2012;18(3):521–9. https://doi.org/10.1017/S1355617712000045.
Hinkley LB, Marco EJ, Findlay AM, Honma S, Jeremy RJ, Strominger Z, et al. The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One. 2012;7(8):e39804. https://doi.org/10.1371/journal.pone.0039804.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shin G, Kim C. Neural correlates of cognitive style and flexible cognitive control. Neuroimage. 2015;113:78–85. https://doi.org/10.1016/j.neuroimage.2015.03.046.
Article
PubMed
Google Scholar
Leunissen I, Coxon JP, Caeyenberghs K, Michiels K, Sunaert S, Swinnen SP. Subcortical volume analysis in traumatic brain injury: the importance of the fronto-striato-thalamic circuit in task switching. Cortex. 2014;51:67–81. https://doi.org/10.1016/j.cortex.2013.10.009.
Article
PubMed
Google Scholar
Hawley C, Sakr M, Scapinello S, Salvo J, Wrenn P. Traumatic brain injuries in older adults-6 years of data for one UK trauma centre: retrospective analysis of prospectively collected data. Emerg Med J. 2017;34(8):509–16. https://doi.org/10.1136/emermed-2016-206506.
Article
PubMed
Google Scholar
Mosenthal AC, Livingston DH, Lavery RF, Knudson MM, Lee S, Morabito D, et al. The effect of age on functional outcome in mild traumatic brain injury: 6-month report of a prospective multicenter trial. J Trauma. 2004;56(5):1042–8. https://doi.org/10.1097/01.ta.0000127767.83267.33.
Centers for Disease Control and Prevention. Trends in aging--United States and worldwide. MMWR Morb Mortal Wkly Rep. 2003;52(6):101–4, 6.
Thompson HJ, Dikmen S, Temkin N. Prevalence of comorbidity and its association with traumatic brain injury and outcomes in older adults. Res Gerontol Nurs. 2012;5(1):17–24. https://doi.org/10.3928/19404921-20111206-02.
Article
PubMed
Google Scholar
Burgmans S, van Boxtel MP, Gronenschild EH, Vuurman EF, Hofman P, Uylings HB, et al. Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension. Neuroimage. 2010;49(3):2083–93. https://doi.org/10.1016/j.neuroimage.2009.10.035.
CAS
Article
PubMed
Google Scholar
Liu JY, Zhou YJ, Zhai FF, Han F, Zhou LX, Ni J, et al. Cerebral microbleeds are associated with loss of white matter integrity. AJNR Am J Neuroradiol. 2020;41(8):1397–404. https://doi.org/10.3174/ajnr.A6622.
Iscan Z, Jin TB, Kendrick A, Szeglin B, Lu H, Trivedi M, et al. Test-retest reliability of freesurfer measurements within and between sites: effects of visual approval process. Human Brain Mapping. 2015;36(9):3472–85. https://doi.org/10.1002/hbm.22856.
Irimia A, Van Horn JD, Vespa PM. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain. Neurobiology of Aging. 2018;66:158–64.
Article
Google Scholar
Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, et al. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447–57. https://doi.org/10.1016/j.neuroimage.2008.07.009.
Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20. https://doi.org/10.1016/j.neuroimage.2017.11.024.
Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage. 2017;161:149–70. https://doi.org/10.1016/j.neuroimage.2017.08.047.
Article
PubMed
Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.
Article
PubMed
Google Scholar