Age-related neuroendocrine and alerting responses to light

Abstract

Aging is associated with sleep and circadian alterations, which can negatively affect quality of life and longevity. Importantly, the age-related reduction in light sensitivity, particularly in the short-wavelength range, may underlie sleep and circadian alterations in older people. While evidence suggests that non-image-forming (NIF) light responses may diminish in older individuals, most laboratory studies have low sample sizes, use non-ecological light settings (e.g., monochromatic light), and typically focus on melatonin suppression by light. Here, we investigated whether NIF light effects on endogenous melatonin levels and sleep frontal slow-wave activity (primary outcomes), and subjective sleepiness and sustained attention (secondary outcomes) attenuate with aging. We conducted a stringently controlled within-subject study with 3 laboratory protocols separated by ~ 1 week in 31 young (18–30 years; 15 women) and 16 older individuals (55–80 years; eight women). Each protocol included 2 h of evening exposure to commercially available blue-enriched polychromatic light (6500 K) or non-blue-enriched light (3000 K or 2500 K) at low levels (~ 40 lx, habitual in evening indoor settings). Aging significantly affected the influence of light on endogenous melatonin levels, subjective sleepiness, sustained attention, and frontal slow-wave activity (interaction: P < 0.001, P = 0.004, P = 0.007, P = 0.001, respectively). In young individuals, light exposure at 6500 K significantly attenuated the increase in endogenous melatonin levels, improved subjective sleepiness and sustained attention performance, and decreased frontal slow-wave activity in the beginning of sleep. Conversely, older individuals did not exhibit signficant differential light sensitivity effects. Our findings provide evidence for an association of aging and reduced light sensitivity, with ramifications to sleep, cognition, and circadian health in older people.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All deidentified data and related documents (study protocol, statistical analysis plan, informed consent form) will be available by the authors with publication to researchers whose proposed use of the data have been approved. Data will be made available to such researchers for any purpose following approval of a proposal with signed data access agreement.

References

  1. 1.

    Turner PL, Van Someren EJ, Mainster MA. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Med Rev. 2010;14(4):269–80. https://doi.org/10.1016/j.smrv.2009.11.002.

    Article  PubMed  Google Scholar 

  2. 2.

    Mazzotti DR, Guindalini C, Moraes WA, Andersen ML, Cendoroglo MS, Ramos LR, et al. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile. Front Aging Neurosci. 2014;6:134. https://doi.org/10.3389/fnagi.2014.00134.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cajochen C, Munch M, Knoblauch V, Blatter K, Wirz-Justice A. Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol Int. 2006;23(1-2):461–74. https://doi.org/10.1080/07420520500545813.

    Article  PubMed  Google Scholar 

  4. 4.

    Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol. 1999;516(Pt 2):611–27. https://doi.org/10.1111/j.1469-7793.1999.0611v.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Duffy JF, Zeitzer JM, Czeisler CA. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging. 2007;28(5):799–807. https://doi.org/10.1016/j.neurobiolaging.2006.03.005.

    Article  PubMed  Google Scholar 

  6. 6.

    Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep. 2021;44(2):zsaa214. https://doi.org/10.1093/sleep/zsaa214.

  7. 7.

    Pescosolido N, Barbato A, Giannotti R, Komaiha C, Lenarduzzi F. Age-related changes in the kinetics of human lenses: prevention of the cataract. Int J Ophthalmol. 2016;9(10):1506–17. https://doi.org/10.18240/ijo.2016.10.23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg. 2010;36(2):308–12. https://doi.org/10.1016/j.jcrs.2009.08.035.

    Article  PubMed  Google Scholar 

  9. 9.

    Bitsios P, Prettyman R, Szabadi E. Changes in autonomic function with age: a study of pupillary kinetics in healthy young and old people. Age Ageing. 1996;25(6):432–8. https://doi.org/10.1093/ageing/25.6.432.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sample PA, Esterson FD, Weinreb RN, Boynton RM. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthalmol Vis Sci. 1988;29(8):1306–11.

    CAS  PubMed  Google Scholar 

  11. 11.

    LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–54. https://doi.org/10.1038/nrn3743.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Prayag AS, Munch M, Aeschbach D, Chellappa SL, Gronfier C. Light Modulation of human clocks, wake, and sleep. Clocks Sleep. 2019;1(1):193–208. https://doi.org/10.3390/clockssleep1010017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, et al. Melanopsin bistability: a fly’s eye technology in the human retina. PLoS One. 2009;4(6):e5991. https://doi.org/10.1371/journal.pone.0005991.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006;29(2):161–8.

    PubMed  Google Scholar 

  15. 15.

    Rahman SA, Flynn-Evans EE, Aeschbach D, Brainard GC, Czeisler CA, Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep. 2014;37(2):271–81. https://doi.org/10.5665/sleep.3396.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab. 2003;88(9):4502–5. https://doi.org/10.1210/jc.2003-030570.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, Oelhafen P, et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab. 2005;90(3):1311–6. https://doi.org/10.1210/jc.2004-0957.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Prayag AS, Najjar RP, Gronfier C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J Pineal Res. 2019;66(4):e12562. https://doi.org/10.1111/jpi.12562.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Herljevic M, Middleton B, Thapan K, Skene DJ. Light-induced melatonin suppression: age-related reduction in response to short wavelength light. Exp Gerontol. 2005;40(3):237–42. https://doi.org/10.1016/j.exger.2004.12.001.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Sletten TL, Revell VL, Middleton B, Lederle KA, Skene DJ. Age-related changes in acute and phase-advancing responses to monochromatic light. J Biol Rhythm. 2009;24(1):73–84. https://doi.org/10.1177/0748730408328973.

    Article  Google Scholar 

  21. 21.

    Daneault V, Hebert M, Albouy G, Doyon J, Dumont M, Carrier J, et al. Aging reduces the stimulating effect of blue light on cognitive brain functions. Sleep. 2014;37(1):85–96. https://doi.org/10.5665/sleep.3314.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chellappa SL, Steiner R, Oelhafen P, Lang D, Gotz T, Krebs J, et al. Acute exposure to evening blue-enriched light impacts on human sleep. J Sleep Res. 2013;22(5):573–80. https://doi.org/10.1111/jsr.12050.

    Article  PubMed  Google Scholar 

  23. 23.

    Munch M, Kobialka S, Steiner R, Oelhafen P, Wirz-Justice A, Cajochen C. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Phys Regul Integr Comp Phys. 2006;290(5):R1421–8. https://doi.org/10.1152/ajpregu.00478.2005.

    CAS  Article  Google Scholar 

  24. 24.

    Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015;112(4):1232–7. https://doi.org/10.1073/pnas.1418490112.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Cajochen C, Reichert CF, Maire M, Schlangen LJM, Schmidt C, Viola AU, et al. Evidence that homeostatic sleep regulation depends on ambient lighting conditions during wakefulness. Clocks Sleep. 2019;1:517–31.

    Article  Google Scholar 

  26. 26.

    Munch M, Scheuermaier KD, Zhang R, Dunne SP, Guzik AM, Silva EJ, et al. Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects. Behav Brain Res. 2011;224(2):272–8. https://doi.org/10.1016/j.bbr.2011.05.029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Benloucif S, Green K, L'Hermite-Baleriaux M, Weintraub S, Wolfe LF, Zee PC. Responsiveness of the aging circadian clock to light. Neurobiol Aging. 2006;27(12):1870–9. https://doi.org/10.1016/j.neurobiolaging.2005.10.011.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Daneault V, Dumont M, Masse E, Forcier P, Bore A, Lina JM, et al. Plasticity in the sensitivity to light in aging: decreased non-visual impact of light on cognitive brain activity in older individuals but no impact of lens replacement. Front Physiol. 2018;9:1557. https://doi.org/10.3389/fphys.2018.01557.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Najjar RP, Chiquet C, Teikari P, Cornut PL, Claustrat B, Denis P, et al. Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms? PLoS One. 2014;9(1):e85837. https://doi.org/10.1371/journal.pone.0085837.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lok R, Smolders K, Beersma DGM, de Kort YAW. Light, Alertness, and alerting effects of white light: a literature overview. J Biol Rhythm. 2018;33(6):589–601. https://doi.org/10.1177/0748730418796443.

    Article  Google Scholar 

  31. 31.

    Skene DJ, Arendt J. Human circadian rhythms: physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem. 2006;43(Pt 5):344–53.

    CAS  Article  Google Scholar 

  32. 32.

    Aeschbach D, Borbely AA. All-night dynamics of the human sleep EEG. J Sleep Res. 1993;2(2):70–81.

    CAS  Article  Google Scholar 

  33. 33.

    Chellappa SL, Ly JQ, Meyer C, Balteau E, Degueldre C, Luxen A, et al. Photic memory for executive brain responses. Proc Natl Acad Sci U S A. 2014;111(16):6087–91.

    CAS  Article  Google Scholar 

  34. 34.

    Cajochen C, Frey S, Anders D, Spati J, Bues M, Pross A, et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol. 2011;110(5):1432–8.

    Article  Google Scholar 

  35. 35.

    Munch M, Kobialka S, Steiner R, Oelhafen P, Wirz-Justice A, Cajochen C. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Phys Regul Integr Comp Phys. 2006;290(5):26.

    Google Scholar 

  36. 36.

    Chellappa SL, Steiner R, Blattner P, Oelhafen P, Gotz T, Cajochen C. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One. 2011;6(1):e16429. https://doi.org/10.1371/journal.pone.0016429.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dinges DF, Pack F, Williams K, Gillen KA, Powell JW, Ott GE, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep. 1997;20(4):267–77.

    CAS  PubMed  Google Scholar 

  38. 38.

    Graw P, Krauchi K, Knoblauch V, Wirz-Justice A, Cajochen C. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav. 2004;80(5):695–701.

    CAS  Article  Google Scholar 

  39. 39.

    Weber JM, Schwander JC, Unger I, Meier D. A direct ultrasensitive RIA for the determination of melatonin in human saliva: comparison with serum levels. J Sleep Res. 1997;26:757.

    Google Scholar 

  40. 40.

    Gillberg M, Kecklund G, Akerstedt T. Relations between performance and subjective ratings of sleepiness during a night awake. Sleep. 1994;17(3):236–41. https://doi.org/10.1093/sleep/17.3.236.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda: US Dept of Health, Education and Welfare, Public Health Service; 1968.

    Google Scholar 

  42. 42.

    Gabel V, Reichert CF, Maire M, Schmidt C, Schlangen LJM, Kolodyazhniy V, et al. Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness. Sci Rep. 2017;7(1):7620. https://doi.org/10.1038/s41598-017-07060-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Santhi N, Lazar AS, McCabe PJ, Lo JC, Groeger JA, Dijk DJ. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci U S A. 2016;113(19):E2730–9. https://doi.org/10.1073/pnas.1521637113.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yan Z, Chang-Quan H, Zhen-Chan L, Bi-Rong D. Association between sleep quality and body mass index among Chinese nonagenarians/centenarians. Age (Dordr). 2012;34(3):527–37. https://doi.org/10.1007/s11357-011-9251-3.

    Article  Google Scholar 

  45. 45.

    Scheuermaier KD, Lee JH, Duffy JF. Phase shifts to a moderate intensity light exposure in older adults: a preliminary report. J Biol Rhythm. 2019;34(1):98–104. https://doi.org/10.1177/0748730418818655.

    Article  Google Scholar 

  46. 46.

    Kim SJ, Benloucif S, Reid KJ, Weintraub S, Kennedy N, Wolfe LF, et al. Phase-shifting response to light in older adults. J Physiol. 2014;592(1):189–202. https://doi.org/10.1113/jphysiol.2013.262899.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Hopkins S, Morgan PL, Schlangen LJM, Williams P, Skene DJ, Middleton B. Blue-enriched lighting for older people living in care homes: effect on activity, actigraphic sleep, mood and alertness. Curr Alzheimer Res. 2017;14(10):1053–62. https://doi.org/10.2174/1567205014666170608091119.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Scheuermaier K, Munch M, Ronda JM, Duffy JF. Improved cognitive morning performance in healthy older adults following blue-enriched light exposure on the previous evening. Behav Brain Res. 2018;348:267–75. https://doi.org/10.1016/j.bbr.2018.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Eyler LT, Sherzai A, Kaup AR, Jeste DV. A review of functional brain imaging correlates of successful cognitive aging. Biol Psychiatry. 2011;70(2):115–22. https://doi.org/10.1016/j.biopsych.2010.12.032.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–5.

    CAS  Article  Google Scholar 

  51. 51.

    Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol. 2008;92(11):1439–44. https://doi.org/10.1136/bjo.2008.141747.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chellappa SL, Bromundt V, Frey S, Steinemann A, Schmidt C, Schlote T, et al. Association of intraocular cataract lens replacement with circadian rhythms, cognitive function, and sleep in older adults. JAMA Ophthalmol. 2019;137:878. https://doi.org/10.1001/jamaophthalmol.2019.1406.

    Article  PubMed Central  Google Scholar 

  53. 53.

    Steinemann A, Bromundt V, Chellappa SL, Frey S, Schmidt C, Schlote T, et al. Evaluation of visual comfort and mental effort under different light conditions for ultraviolet-absorbing and additional blue-filtering intraocular lenses for cataract surgery. Klin Monatsbl Augenheilkd. 2019;236(4):398–404. https://doi.org/10.1055/a-0810-0302.

    Article  PubMed  Google Scholar 

  54. 54.

    Chellappa SL, Bromundt V, Frey S, Schlote T, Goldblum D, Cajochen C, et al. Intraocular cataract lens replacement and light exposure potentially impact procedural learning in older adults. J Sleep Res. 2020;1:e13043. https://doi.org/10.1111/jsr.13043.

    Article  Google Scholar 

  55. 55.

    Brondsted AE, Sander B, Haargaard B, Lund-Andersen H, Jennum P, Gammeltoft S, et al. The effect of cataract surgery on circadian photoentrainment: a randomized trial of blue-blocking versus neutral intraocular lenses. Ophthalmology. 2015;122(10):2115–24. https://doi.org/10.1016/j.ophtha.2015.06.033.

    Article  PubMed  Google Scholar 

  56. 56.

    Esquiva G, Lax P, Perez-Santonja JJ, Garcia-Fernandez JM, Cuenca N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 2017;9:79. https://doi.org/10.3389/fnagi.2017.00079.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Mishima K, Okawa M, Shimizu T, Hishikawa Y. Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab. 2001;86(1):129–34. https://doi.org/10.1210/jcem.86.1.7097.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Figueiro MG, Bierman A, Bullough JD, Rea MS. A personal light-treatment device for improving sleep quality in the elderly: dynamics of nocturnal melatonin suppression at two exposure levels. Chronobiol Int. 2009;26(4):726–39. https://doi.org/10.1080/07420520902927809.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chellappa SL, Steiner R, Oelhafen P, Cajochen C. Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci Rep. 2017;7(1):14215. https://doi.org/10.1038/s41598-017-13973-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Julia Krebs, Dr. Thomas Götz, and Dr. Corrado Garbazza for medical screenings, Dr. Christina Schmidt for assistance with the cognitive data preprocessing, Giovanni Balestreri, Claudia Renz, Marie-France Dattler, and all the study helpers for their help in data acquisition. We thank Dr. Roland Steiner, Dr. Dieter Lang, and Prof. Peter Oelhafen for their assistance with the light settings, and the volunteers for participating in this study.

Funding

This study was financially supported by the AXA Foundation (https://www.axa-research.org/en/project/christian-cajochen) and by the Swiss Federal Office for Public Health (Consumer Protection Directorate, 11.007647). The funders had no role in the design and conduct of the study; collection, management, analyses, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Affiliations

Authors

Contributions

S.L.C. and C.C. conceived and designed the study. S.L.C, V.B., and S.F. performed the experiments and data acquisition. S.L.C. performed the statistical analyses. S.L.C., V.B., S.F., and C.C. drafted the manuscript. All the authors helped interpret the data, provided critical revisions of the manuscript, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Sarah L. Chellappa or Christian Cajochen.

Ethics declarations

Ethical approval and consent to participate

Our study complied with ethical standards. All study participants provided written informed consent. The local Ethical Committee (EKBB/Ethikkommission beider Basel, Switzerland) approved the study protocol, advertisements, screening questionnaires, and the consent form, which were in agreement with the Declaration of Helsinki.

Consent to participate

All study participants provided written informed consent. The local Ethical Committee (EKBB/Ethikkommission beider Basel, Switzerland) approved the study protocol, advertisements, screening questionnaires, and the consent form, which were in agreement with the Declaration of Helsinki.

Consent for publication

All co-authors have reviewed the content provided in the article and consent for publication.

Conflict of interest

C.C. has had the following commercial interests related to lighting: honoraria, travel, accommodation and/or meals for invited keynote lectures, conference presentations or teaching from Toshiba Materials, Velux, Firalux, Lighting Europe, Electrosuisse, Novartis, Roche, Elite, Servier, and WIR Bank. C.C. is a member of the Daylight Academy. None of these are related to the current study and manuscript publication. S.L.C., V.B., and S.F. declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chellappa, S.L., Bromundt, V., Frey, S. et al. Age-related neuroendocrine and alerting responses to light. GeroScience (2021). https://doi.org/10.1007/s11357-021-00333-1

Download citation

Keywords

  • Aging
  • Light sensitivity
  • Circadian photosensitivity
  • Alertness
  • Cognition
  • Sleep