Skip to main content

Advertisement

Log in

Alterations in the estrogen receptor profile of cardiovascular tissues during aging

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Estrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging. Vascular reactivity and GPER protein expression were assessed in female mice of varying ages. Physiological parameters, blood pressure, and estrogen receptor transcripts via droplet digital PCR (ddPCR) were assessed in the heart, kidney, and aorta of adult, middle-aged, and aged male and female C57BL/6 mice. Vasodilation to estrogen (E2) and the GPER agonist G-1 were reduced in aging female mice and were accompanied by downregulation of GPER protein. However, ERα and GPER were the predominant receptors in all tissues, whereas ERß was detectable only in the kidney. Female sex was associated with higher mRNA for both ERα and GPER in both the aorta and the heart. Aging impacted receptor transcript in a tissue-dependent manner. ERα transcript decreased in the heart with aging, while GPER expression increased in the heart. These data indicate that aging impacts estrogen receptor expression in the cardiovascular system in a tissue- and sex-specific manner. Understanding the impact of aging on estrogen receptor expression is critical for developing selective hormone therapies that protect from cardiovascular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindsey SH, Chappell MC. Evidence that the G protein-coupled membrane receptor GPR30 contributes to the cardiovascular actions of estrogen. Gender medicine. 2011;8(6):343–54. https://doi.org/10.1016/j.genm.2011.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sudhir K, Komesaroff PA. Clinical review 110: Cardiovascular actions of estrogens in men. J Clin Endocrinol Metab. 1999;84(10):3411–5. https://doi.org/10.1210/jcem.84.10.5954.

    Article  CAS  PubMed  Google Scholar 

  3. Lindsey SH, Liu L, Chappell MC. Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids. 2014;81:99–102. https://doi.org/10.1016/j.steroids.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  4. Chappell MC, Gallagher PE, Averill DB, Ferrario CM, Brosnihan KB. Estrogen or the AT1 antagonist olmesartan reverses the development of profound hypertension in the congenic mRen2. Lewis rat. Hypertension. 2003;42(4):781–6. https://doi.org/10.1161/01.HYP.0000085210.66399.A3.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2014;306(5):H628–40. https://doi.org/10.1152/ajpheart.00859.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deschamps AM, Murphy E, Sun J. Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends in cardiovascular medicine. 2010;20(3):73–8. https://doi.org/10.1016/j.tcm.2010.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2). Lewis rat. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1557–63. https://doi.org/10.1152/ajpregu.00051.2006.

    Article  CAS  PubMed  Google Scholar 

  8. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–66. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  9. Merz AA, Cheng S. Sex differences in cardiovascular ageing. Heart. 2016;102(11):825–31. https://doi.org/10.1136/heartjnl-2015-308769.

    Article  PubMed  Google Scholar 

  10. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. Jama. 2002;288(3):321–33. https://doi.org/10.1001/jama.288.3.321.

    Article  CAS  PubMed  Google Scholar 

  11. Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Willett WC, Rosner B, et al. Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med. 1996;335(7):453–61. https://doi.org/10.1056/NEJM199608153350701.

    Article  CAS  PubMed  Google Scholar 

  12. Mehta JM, Chester RC, Kling JM. The timing hypothesis: hormone therapy for treating symptomatic women during menopause and its relationship to cardiovascular disease. J Women's Health (Larchmt). 2018;28:705–11. https://doi.org/10.1089/jwh.2018.7201.

    Article  Google Scholar 

  13. Clarkson TB, Meléndez GC, Appt SE. Timing hypothesis for postmenopausal hormone therapy: its origin, current status, and future. Menopause. 2013;20(3):342–53. https://doi.org/10.1097/GME.0b013e3182843aad.

    Article  PubMed  Google Scholar 

  14. O'Lone R, Frith MC, Karlsson EK, Hansen U. Genomic targets of nuclear estrogen receptors. Molecular endocrinology (Baltimore, Md). 2004;18(8):1859-1875. doi:10.1210/me.2003-0044.

  15. Zimmerman MA, Budish RA, Kashyap S, Lindsey SH. GPER-novel membrane oestrogen receptor. Clinical science (London, England : 1979). 2016;130(12):1005–16. https://doi.org/10.1042/CS20160114.

    Article  CAS  Google Scholar 

  16. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5. https://doi.org/10.1038/nmeth.2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmerman MA, Ogola BO, Wilkinson MM, Visniauskas B, De Miguel C, Daniel JM, et al. Medroxyprogesterone opposes estradiol-induced renal damage in midlife ovariectomized Long Evans rats. Menopause. 2020;27:1411–9. https://doi.org/10.1097/gme.0000000000001675.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lindsey SH, Carver KA, Prossnitz ER, Chappell MC. Vasodilation in response to the GPR30 agonist G-1 is not different from estradiol in the mRen2.Lewis female rat. J Cardiovasc Pharmacol. 2011;57(5):598–603. https://doi.org/10.1097/FJC.0b013e3182135f1c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10. https://doi.org/10.1021/ac202028g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutson DD, Gurrala R, Ogola BO, Zimmerman MA, Mostany R, Satou R, et al. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol Sex Differ. 2019;10(1):4. https://doi.org/10.1186/s13293-019-0219-9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Kashyap S, Murphy B, Hutson DD, Budish RA, Trimmer EH, et al. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension. Am J Physiol Heart Circ Physiol. 2016;310(8):H953–61. https://doi.org/10.1152/ajpheart.00631.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, et al. G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep. 2014;4:7564. https://doi.org/10.1038/srep07564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mugge A, Riedel M, Barton M, Kuhn M, Lichtlen PR. Endothelium independent relaxation of human coronary arteries by 17 beta-oestradiol in vitro. Cardiovasc Res. 1993;27(11):1939–42. https://doi.org/10.1093/cvr/27.11.1939.

    Article  CAS  PubMed  Google Scholar 

  24. Haas E, Meyer MR, Schurr U, Bhattacharya I, Minotti R, Nguyen HH, et al. Differential effects of 17beta-estradiol on function and expression of estrogen receptor alpha, estrogen receptor beta, and GPR30 in arteries and veins of patients with atherosclerosis. Hypertension. 2007;49(6):1358–63. https://doi.org/10.1161/HYPERTENSIONAHA.107.089995.

    Article  CAS  PubMed  Google Scholar 

  25. Lindsey SH, da Silva AS, Silva MS, Chappell MC. Reduced vasorelaxation to estradiol and G-1 in aged female and adult male rats is associated with GPR30 downregulation. Am J Physiol Endocrinol Metab. 2013;305(1):E113–8. https://doi.org/10.1152/ajpendo.00649.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res. 1999;43(4):985–91. https://doi.org/10.1016/s0008-6363(99)00153-4.

    Article  CAS  PubMed  Google Scholar 

  27. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46(1):172–9. https://doi.org/10.1016/s0008-6363(00)00004-3.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng SB, Quinn JA, Graeber CT, Filardo EJ. Down-modulation of the G-protein-coupled estrogen receptor, GPER, from the cell surface occurs via a trans-Golgi-proteasome pathway. J Biol Chem. 2011;286(25):22441–55. https://doi.org/10.1074/jbc.M111.224071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma PK, Thakur MK. Estrogen receptor alpha expression in mice kidney shows sex differences during aging. Biogerontology. 2004;5(6):375–81. https://doi.org/10.1007/s10522-004-3191-6.

    Article  CAS  PubMed  Google Scholar 

  30. Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology. 1997;138(3):863–70. https://doi.org/10.1210/endo.138.3.4979.

    Article  CAS  PubMed  Google Scholar 

  31. Jelinsky SA, Harris HA, Brown EL, Flanagan K, Zhang X, Tunkey C, et al. Global transcription profiling of estrogen activity: estrogen receptor alpha regulates gene expression in the kidney. Endocrinology. 2003;144(2):701–10. https://doi.org/10.1210/en.2002-220728.

    Article  CAS  PubMed  Google Scholar 

  32. Lane PH. Estrogen receptors in the kidney: lessons from genetically altered mice. Gender Medicine. 2008;5 Suppl A:S11-8. doi:10.1016/j.genm.2008.03.003.

  33. Pfaffl MW, Lange IG, Daxenberger A, Meyer HH. Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR. APMIS. 2001;109(5):345–55. https://doi.org/10.1034/j.1600-0463.2001.090503.x.

    Article  CAS  PubMed  Google Scholar 

  34. Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab. 1997;82(10):3509–12. https://doi.org/10.1210/jcem.82.10.4400.

    Article  CAS  PubMed  Google Scholar 

  35. Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol. 2016;431:62–70. https://doi.org/10.1016/j.mce.2016.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor AH, Al-Azzawi F. Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol. 2000;24(1):145–55. https://doi.org/10.1677/jme.0.0240145.

    Article  CAS  PubMed  Google Scholar 

  37. Leibetseder V, Humpeler S, Zuckermann A, Svoboda M, Thalhammer T, Marktl W, et al. Time dependence of estrogen receptor expression in human hearts. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2010;64(3):154–9. https://doi.org/10.1016/j.biopha.2009.09.010.

    Article  CAS  Google Scholar 

  38. Nordmeyer J, Eder S, Mahmoodzadeh S, Martus P, Fielitz J, Bass J, et al. Upregulation of myocardial estrogen receptors in human aortic stenosis. Circulation. 2004;110(20):3270–5. https://doi.org/10.1161/01.CIR.0000147610.41984.E8.

    Article  CAS  PubMed  Google Scholar 

  39. Nikolic I, Liu D, Bell JA, Collins J, Steenbergen C, Murphy E. Treatment with an estrogen receptor-beta-selective agonist is cardioprotective. J Mol Cell Cardiol. 2007;42(4):769–80. https://doi.org/10.1016/j.yjmcc.2007.01.014.

    Article  CAS  PubMed  Google Scholar 

  40. Skavdahl M, Steenbergen C, Clark J, Myers P, Demianenko T, Mao L, et al. Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol. 2005;288(2):H469–76. https://doi.org/10.1152/ajpheart.00723.2004.

    Article  CAS  PubMed  Google Scholar 

  41. Prabhu A, Xu Q, Manigrasso MB, Biswas M, Flynn E, Iliescu R, et al. Expression of aromatase, androgen and estrogen receptors in peripheral target tissues in diabetes. Steroids. 2010;75(11):779–87. https://doi.org/10.1016/j.steroids.2009.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fares E, Pyle WG, Ray G, Rose RA, Denovan-Wright EM, Chen RP, et al. The impact of ovariectomy on calcium homeostasis and myofilament calcium sensitivity in the aging mouse heart. PLoS One. 2013;8(9):e74719. https://doi.org/10.1371/journal.pone.0074719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rivera CM, Grossardt BR, Rhodes DJ, Brown RD Jr, Roger VL, Melton LJ 3rd, et al. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause. 2009;16(1):15–23. https://doi.org/10.1097/gme.0b013e31818888f7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;3(1):7. https://doi.org/10.1186/2042-6410-3-7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. Jama. 2007;297(13):1465–77. https://doi.org/10.1001/jama.297.13.1465.

    Article  CAS  PubMed  Google Scholar 

  46. Manson JE, Aragaki AK, Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: the Women’s Health Initiative randomized trials. Jama. 2017;318(10):927–38. https://doi.org/10.1001/jama.2017.11217.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Flurkey K, Randall PK, Sinha YN, Ermini M, Finch CE. Transient shortening of estrous cycles in aging C57BL/6J mice: effects of spontaneous pseudopregnancy, progesterone, L-dihydroxyphenylalanine, and hydergine1. Biol Reprod. 1987;36(4):949–59. https://doi.org/10.1095/biolreprod36.4.949.

    Article  CAS  PubMed  Google Scholar 

  48. Gebhardt S, Merkl M, Herbach N, Wanke R, Handler J, Bauersachs S. Exploration of global gene expression changes during the estrous cycle in equine endometrium. Biol Reprod. 2012;87(6):136. https://doi.org/10.1095/biolreprod.112.103226.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Institutes Of Health, National Heart, Lung, and Blood Institute, HL133619, National Institutes of General Medical Sciences, P30GM103337 and U54GM104940, National Institute of Diabetes and Digestive and Kidney Diseases, DK107694, National Institute of Neurological Disorders and Stroke and National Institute of General Medical Sciences NS094834, and National Institute on Aging, AG047296.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Rakesh Gurrala, Dillion Hutson, Isabella Kilanowski-Doroh, and Sarah Lindsey. The first draft of the manuscript was written by Rakesh Gurrala and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sarah H. Lindsey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rakesh Gurrala and Isabella M. Kilanowski-Doroh are the co-first authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurrala, R., Kilanowski-Doroh, I.M., Hutson, D.D. et al. Alterations in the estrogen receptor profile of cardiovascular tissues during aging. GeroScience 43, 433–442 (2021). https://doi.org/10.1007/s11357-021-00331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00331-3

Keywords

Navigation