Skip to main content

Advertisement

Log in

Fasting and fasting-mimicking diets for chemotherapy augmentation

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The increasingly older population in most developed countries will likely experience aging-related chronic diseases such as diabetes, metabolic syndrome, heart and lung diseases, osteoporosis, arthritis, dementia, and/or cancer. Genetic and environmental factors, but also lifestyle choices including physical activity and dietary habits, play essential roles in disease onset and progression. Sixty-five percent of Americans diagnosed with cancer now survive more than 5 years, making the need for informed lifestyle choices particularly important to successfully complete their treatment, increase the recovery from the cytotoxic therapy options, and improve cancer-free survival. This review will discuss the findings on the use of prolonged fasting, as well as fasting-mimicking diets to augment cancer treatment. Preclinical studies in rodents strongly support the implementation of these dietary interventions and a small number of clinical trials begin to provide encouraging results for cancer patients and cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rock CL, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J Clin. 2020;70(4):245–71.

    Article  PubMed  Google Scholar 

  2. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328(5976):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008;77:727–54.

    Article  CAS  PubMed  Google Scholar 

  4. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robertson LT, Mitchell JR. Benefits of short-term dietary restriction in mammals. Exp Gerontol. 2013;48(10):1043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science. 2003;299(5611):1342–6.

    Article  PubMed  Google Scholar 

  7. Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci. 2010;31(2):89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brandhorst S, Longo VD. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res. 2019;124(6):952–65.

    Article  CAS  PubMed  Google Scholar 

  10. Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA. Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One. 2013;8(1):e53760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez NA, Garcia KD, Fortman JD, Hewett TA, Bunte RM, Bennett BT. Clinical and histopathological evaluation of 13 cases of adenocarcinoma in aged rhesus macaques (Macaca mulatta). J Med Primatol. 2002;31(2):74–83.

    Article  CAS  PubMed  Google Scholar 

  12. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.

    Article  CAS  PubMed  Google Scholar 

  14. Fontana L, Villareal DT, Das SK, Smith SR, Meydani SN, Pittas AG, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell. 2016;15(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  15. Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177(7):930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, Martin B, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013;110(8):1534–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35(5):714–27.

    Article  CAS  Google Scholar 

  18. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23(6):1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev. 2017;39:59–67.

    Article  PubMed  Google Scholar 

  20. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N. Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev. 1990;55(1):69–87.

    Article  CAS  PubMed  Google Scholar 

  21. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16(6):706–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16(3):129–37.

    Article  CAS  PubMed  Google Scholar 

  23. de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381(26):2541–51.

    Article  PubMed  Google Scholar 

  24. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371–93.

    Article  CAS  PubMed  Google Scholar 

  25. Brandhorst S, Longo VD. Fasting and caloric restriction in cancer prevention and treatment. Recent Results Cancer Res. 2016;207:241–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018;18(11):707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aloui A, Baklouti H, Souissi N, Chtourou H. Effects of Ramadan fasting on body composition in athletes: a systematic review. Tunis Med. 2019;97(10):1087–94.

    PubMed  Google Scholar 

  28. Michalsen A, Li C. Fasting therapy for treating and preventing disease - current state of evidence. Forsch Komplementmed. 2013;20(6):444–53.

    PubMed  Google Scholar 

  29. Zantar A, Azzoug S, Belhimer F, Chentli F. Diabetes and Ramadan. Presse Med. 2012;41(11):1084–8.

    Article  PubMed  Google Scholar 

  30. Hutcheon DA. Malnutrition-induced Wernicke’s encephalopathy following a water-only fasting diet. Nutr Clin Pract. 2015;30(1):92–9.

    Article  PubMed  Google Scholar 

  31. Finnell JS, Saul BC, Goldhamer AC, Myers TR. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complement Altern Med. 2018;18(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9(377):eaai8700.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and health span. Cell Metab. 2015;22(1):86–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-mimicking diet promotes Ngn3-driven beta-cell regeneration to reverse diabetes. Cell. 2017;168(5):775–88 e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 2019;26(10):2704–19 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 2016;15(10):2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, González-Reyes JA, et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 2016;23(6):1093–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, Adler T, et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013;123(8):3272–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, et al. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun. 2017;8(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P, et al. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol. 2009;186(4):509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harrison DE, Archer JR. Natural selection for extended longevity from food restriction. Growth Dev Aging. 1989;53(1-2):3.

    CAS  PubMed  Google Scholar 

  43. Longo VD. Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging. 1999;20(5):479–86.

    Article  CAS  PubMed  Google Scholar 

  44. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408(6809):255–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kenyon C. A conserved regulatory system for aging. Cell. 2001;105(2):165–8.

    Article  CAS  PubMed  Google Scholar 

  46. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology. 2003;144(9):3799–810.

    Article  CAS  PubMed  Google Scholar 

  47. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182–7.

    Article  CAS  PubMed  Google Scholar 

  48. Bonkowski MS, Dominici FP, Arum O, Rocha JS, al Regaiey KA, Westbrook R, et al. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS One. 2009;4(2):e4567.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326(5949):140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown-Borg HM. Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol. 2009;299(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  51. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384(6604):33.

    Article  CAS  PubMed  Google Scholar 

  52. Murakami S. Stress resistance in long-lived mouse models. Exp Gerontol. 2006;41(10):1014–9.

    Article  CAS  PubMed  Google Scholar 

  53. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab. 2005;289(1):E23–9.

    Article  CAS  PubMed  Google Scholar 

  54. Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol. 2000;35(2):199–212.

    Article  CAS  PubMed  Google Scholar 

  55. Brown-Borg HM, Rakoczy SG, Romanick MA, Kennedy MA. Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes. Exp Biol Med (Maywood). 2002;227(2):94–104.

    Article  CAS  Google Scholar 

  56. Bartke A, Chandrashekar V, Bailey B, Zaczek D, Turyn D. Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides. 2002;36(2-3):201–8.

    Article  CAS  PubMed  Google Scholar 

  57. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  58. DePinho RA. The age of cancer. Nature. 2000;408(6809):248–54.

    Article  CAS  PubMed  Google Scholar 

  59. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol. 2011;21(6):354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tannenbaum A. The dependence of tumor formation on the composition of the calorie-restricted diet as well as on the degree of restriction. 1945. Nutrition. 1996;12(9):653–4.

    Article  CAS  PubMed  Google Scholar 

  61. Tannenbaum A. The initiation and growth of tumours. Introduction. 1. Effects of underfeeding. Am J Cancer. 1940;38:335–50.

    CAS  Google Scholar 

  62. Berrigan D, Perkins SN, Haines DC, Hursting SD. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis. 2002;23(5):817–22.

    Article  CAS  PubMed  Google Scholar 

  63. Hursting SD, Perkins SN, Phang JM. Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc Natl Acad Sci U S A. 1994;91(15):7036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science. 1982;215(4538):1415–8.

    Article  CAS  PubMed  Google Scholar 

  65. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986;116(4):641–54.

    Article  CAS  PubMed  Google Scholar 

  66. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5:3557.

    Article  PubMed  Google Scholar 

  67. Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature. 2009;458(7239):725–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7.

    Article  CAS  PubMed  Google Scholar 

  69. Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004;10(16):5622–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bonorden MJ, et al. Intermittent calorie restriction delays prostate tumor detection and increases survival time in TRAMP mice. Nutr Cancer. 2009;61(2):265–75.

    Article  PubMed  Google Scholar 

  71. Kristan DM. Calorie restriction and susceptibility to intact pathogens. Age (Dordr). 2008;30(2-3):147–56.

    Article  Google Scholar 

  72. Reed MJ, Penn PE, Li Y, Birnbaum R, Vernon RB, Johnson TS, et al. Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mech Ageing Dev. 1996;89(1):21–43.

    Article  CAS  PubMed  Google Scholar 

  73. Kim SK, Demetri GD. Chemotherapy and neutropenia. Hematol Oncol Clin North Am. 1996;10(2):377–95.

    Article  CAS  PubMed  Google Scholar 

  74. Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene. 2011;30(30):3305–16.

    Article  CAS  PubMed  Google Scholar 

  75. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.

    Article  CAS  PubMed  Google Scholar 

  77. Underwood LE, Thissen JP, Lemozy S, Ketelslegers JM, Clemmons DR. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res. 1994;42(4-5):145–51.

    Article  CAS  PubMed  Google Scholar 

  78. Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3(6):e2264.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Grasl-Kraupp B, Bursch W, Ruttkay-Nedecky B, Wagner A, Lauer B, Schulte-Hermann R. Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. Proc Natl Acad Sci U S A. 1994;91(21):9995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS One. 2014;9(12):e115147.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kanarek N, Petrova B, Sabatini DM. Dietary modifications for enhanced cancer therapy. Nature. 2020;579(7800):507–17.

    Article  CAS  PubMed  Google Scholar 

  83. Pape-Ansorge KA, Grande, Christensen TA, Maihle NJ, Cleary MP. Effect of moderate caloric restriction and/or weight cycling on mammary tumor incidence and latency in MMTV-Neu female mice. Nutr Cancer. 2002;44(2):162–8.

    Article  PubMed  Google Scholar 

  84. Mehta RS, Harris SR, Gunnett CA, Bunce OR, Hartle DK. The effects of patterned calorie-restricted diets on mammary tumor incidence and plasma endothelin levels in DMBA-treated rats. Carcinogenesis. 1993;14(8):1693–6.

    Article  CAS  PubMed  Google Scholar 

  85. Thomas JA 2nd, et al. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model. Prostate Cancer Prostatic Dis. 2010;13(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  86. Buschemeyer WC 3rd, et al. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice. Prostate. 2010;70(10):1037–43.

    Article  CAS  PubMed  Google Scholar 

  87. Castejon M, et al. Energy restriction and colorectal cancer: a call for additional research. Nutrients. 2020;12(1):114.

    Article  CAS  PubMed Central  Google Scholar 

  88. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1(3):131–40.

    Article  PubMed  Google Scholar 

  89. Premoselli F, Sesca E, Binasco V, Caderni G, Tessitore L. Fasting/re-feeding before initiation enhances the growth of aberrant crypt foci induced by azoxymethane in rat colon and rectum. Int J Cancer. 1998;77(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  90. Sesca E, Premoselli F, Binasco V, Bollito E, Tessitore L. Fasting-refeeding stimulates the development of mammary tumors induced by 7,12-dimethylbenz[a]anthracene. Nutr Cancer. 1998;30(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  91. Tessitore L, Tomasi C, Greco M. Fasting-induced apoptosis in rat liver is blocked by cycloheximide. Eur J Cell Biol. 1999;78(8):573–9.

    Article  CAS  PubMed  Google Scholar 

  92. Mitchell JR, Verweij M, Brand K, van de Ven M, Goemaere N, van den Engel S, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell. 2009;9(1):40–53.

    Article  PubMed  Google Scholar 

  93. van Ginhoven TM, Mitchell JR, Verweij M, Hoeijmakers JHJ, Ijzermans JNM, de Bruin RWF. The use of preoperative nutritional interventions to protect against hepatic ischemia-reperfusion injury. Liver Transpl. 2009;15(10):1183–91.

    Article  PubMed  Google Scholar 

  94. Verweij M, van Ginhoven TM, Mitchell JR, Sluiter W, den Engel S, Roest HP, et al. Preoperative fasting protects mice against hepatic ischemia/reperfusion injury: mechanisms and effects on liver regeneration. Liver Transpl. 2011;17(6):695–704.

    Article  PubMed  Google Scholar 

  95. Varendi K, Airavaara M, Anttila J, Vose S, Planken A, Saarma M, et al. Short-term preoperative dietary restriction is neuroprotective in a rat focal stroke model. PLoS One. 2014;9(4):e93911.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Davis LM, Pauly JR, Readnower RD, Rho JM, Sullivan PG. Fasting is neuroprotective following traumatic brain injury. J Neurosci Res. 2008;86(8):1812–22.

    Article  CAS  PubMed  Google Scholar 

  97. Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol. 1997;137(7):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105(24):8215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  100. Tinkum KL, Stemler KM, White LS, Loza AJ, Jeter-Jones S, Michalski BM, et al. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival. Proc Natl Acad Sci U S A. 2015;112(51):E7148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Withers SS, Kass PH, Rodriguez CO Jr, Skorupski KA, O’Brien D, Guerrero TA, et al. Fasting reduces the incidence of delayed-type vomiting associated with doxorubicin treatment in dogs with lymphoma. Transl Oncol. 2014;7:377–83.

    Article  PubMed Central  Google Scholar 

  102. Huisman SA, Bijman-Lagcher W, IJzermans JNM, Smits R, de Bruin RWF. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle. 2015;14(14):2333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yildirim Y, Gultekin E, Avci ME, Inal MM, Yunus S, Tinar S. Cardiac safety profile of pegylated liposomal doxorubicin reaching or exceeding lifetime cumulative doses of 550 mg/m2 in patients with recurrent ovarian and peritoneal cancer. Int J Gynecol Cancer. 2008;18(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  104. Di Biase S, et al. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol. 2017;15(3):e2001951.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cheng C-W, Adams GB, Perin L, Wei M, Zhou X, Lam BS, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014;14(6):810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging (Albany NY). 2009;1(12):988–1007.

    Article  Google Scholar 

  107. de la Cruz Bonilla M, Stemler KM, Jeter-Jones S, Fujimoto TN, Molkentine J, Asencio Torres GM, et al. Fasting reduces intestinal radiotoxicity, enabling dose-escalated radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2019;105(3):537–47.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  109. Medema RH, Bos JL. The role of p21ras in receptor tyrosine kinase signaling. Crit Rev Oncog. 1993;4(6):615–61.

    CAS  PubMed  Google Scholar 

  110. Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol. 2008;10(12):1477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ruckenstuhl C, Büttner S, Carmona-Gutierrez D, Eisenberg T, Kroemer G, Sigrist SJ, et al. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One. 2009;4(2):e4592.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25(11):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jeon H, Kim JH, Lee E, Jang YJ, Son JE, Kwon JY, et al. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget. 2016;7(41):67223–34.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee C, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4(124):124ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Safdie F, Brandhorst S, Wei M, Wang W, Lee C, Hwang S, et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One. 2012;7(9):e44603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer. 2012;12:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, di Biase S, et al. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol. 2018;233(2):1202–12.

    Article  CAS  PubMed  Google Scholar 

  118. D'Aronzo M, et al. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget. 2015;6(21):18545–57.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Brandhorst S, Wei M, Hwang S, Morgan TE, Longo VD. Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Exp Gerontol. 2013;48:1120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, et al. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget. 2015;6(14):11806–19.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shim HS, Wei M, Brandhorst S, Longo VD. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015;75(6):1056–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Caffa I, D’Agostino V, Damonte P, Soncini D, Cea M, Monacelli F, et al. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition. Oncotarget. 2015;6(14):11820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Di Biase S, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ma Y, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra18.

    Article  PubMed  Google Scholar 

  125. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350(6266):1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A. 2008;105(32):11105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Di Tano M, et al. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat Commun. 2020;11(1):2332.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature. 2020;583(7817):620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer. 2016;16(1):360.

    Article  PubMed  PubMed Central  Google Scholar 

  130. de Groot S, Vreeswijk MPG, Welters MJP, Gravesteijn G, Boei JJWA, Jochems A, et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer. 2015;15:652.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vernieri C, et al. Exploiting FAsting-mimicking Diet and MEtformin to improve the efficacy of platinum-pemetrexed chemotherapy in advanced LKB1-inactivated lung adenocarcinoma: the FAME trial. Clin Lung Cancer. 2018;20(3):e413–7.

    Article  PubMed  Google Scholar 

  132. Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018;18(1):476.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lugtenberg RT, et al. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013-14) trial. Breast Cancer Res Treat. 2020.

  134. de Groot S, et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pollack MN. Insulin, insulin-like growth factors, insulin resistance, and neoplasia. Am J Clin Nutr. 2007;86(3):s820–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SB wrote the article.

Corresponding author

Correspondence to Sebastian Brandhorst.

Ethics declarations

Conflict of interest

USC has a licensed intellectual property related to a commercial fasting-mimicking diet to L-Nutra that is discussed in this review. As part of this license agreement, the University has the potential to receive royalty payments from L-Nutra.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandhorst, S. Fasting and fasting-mimicking diets for chemotherapy augmentation. GeroScience 43, 1201–1216 (2021). https://doi.org/10.1007/s11357-020-00317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00317-7

Keywords

Navigation