Skip to main content

Advertisement

Log in

Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Calorie restriction mimetics encompass a growing research field directed toward developing treatments that mimic the anti-aging effects of long-term calorie restriction without requiring a change in eating habits. A wide range of approaches have been identified that include (1) intestinal inhibitors of fat and carbohydrate metabolism; (2) inhibitors of intracellular glycolysis; (3) stimulators of the AMPK pathway; (4) sirtuin activators; (5) inhibitors of the mTOR pathway, and (6) polyamines. Several biotech companies have been formed to pursue several of these strategies. The objective of this review is to describe the approaches directed toward glycolytic inhibition. This upstream strategy is considered an effective means to invoke a wide range of anti-aging mechanisms induced by CR. Anti-cancer and anti-obesity effects are important considerations in early development efforts. Although many dozens of candidates could be discussed, the compounds selected to be reviewed are the following: 2-deoxyglucose, 3-bromopyruvate, chrysin, genistein, astragalin, resveratrol, glucosamine, mannoheptulose, and d-allulose. Some candidates have been investigated extensively with both positive and negative results, while others are only beginning to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lane MA, Ingram DK, Roth GS. 2-Deoxy-D-glucose feeding in rats mimics physiological effects of calorie restriction. J Anti-Aging Med. 1998;1:327–37.

    CAS  Google Scholar 

  2. Roth GS, Lane MA, Ingram DK. 2005. Caloric restriction mimetics: the next phase. Ann N Y Acad Sci 2005;1057,365–371.

  3. Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, et al. Calorie restriction mimetics: an emerging research field. Aging Cell. 2006;5:97–108.

    CAS  PubMed  Google Scholar 

  4. Ingram, DK, Roth, GS. Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol. 211;46,148–54.

  5. Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev. 2015;20C:46–62.

    Google Scholar 

  6. Pajak B, Siwiak E, Sołtyka M, Priebe A, Zielinski R, Fokt I, et al. 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2020;21:234. https://doi.org/10.3390/ijms21010234.

    Article  CAS  Google Scholar 

  7. Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res. 1999;57:48–61.

    CAS  PubMed  Google Scholar 

  8. Guo Z, Mattson MP. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid β-peptide and iron: evidence for a stress response. Exp Neurol. 2000;166:173–9.

    CAS  PubMed  Google Scholar 

  9. Yu ZF, Mattson MP. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res. 1999;57:830–9.

    CAS  PubMed  Google Scholar 

  10. Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res. 1999;57:195–206.

    CAS  PubMed  Google Scholar 

  11. Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17:1133–4.

    CAS  PubMed  Google Scholar 

  12. Wan R, Camandola S, Mattson MP. Dietary supplementation with 2-deoxy-D-glucose improves cardiovascular and neuroendocrine stress adaptation in rats. Am J Physiol Heart Circ Physiol. 2004;287:H1186–93.

    CAS  PubMed  Google Scholar 

  13. Fuemayor LD, Diaz S. The effect of feeding on the stereotyped behaviour induced by amphetamine and by apomorphine in the albino rat. Eur J Pharmacol. 1984;99:153–8.

    Google Scholar 

  14. Mamczarz J, Duffy K, Bowker J, Zhu M, Hagepanos A, Ingram D. Enhancement of amphetamine-induced locomotor response in rats on different regimens of diet restriction and 2-deoxyglucose treatment. Neurosci. 2005;131:451–61.

    CAS  Google Scholar 

  15. Yao J, Chen S, Mao Z, Cadenas E, Brinton RD. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One. 2011;6(7):e21788. doi: 10.1371.

  16. Pedersen PL. Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007;39:211–9.

    CAS  PubMed  Google Scholar 

  17. Zhu Z, Jiang W, McGinley JN, Thompson HJ. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res. 2005;65:7023–30.

    CAS  PubMed  Google Scholar 

  18. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–93.

    CAS  PubMed  Google Scholar 

  19. Calabrese EJ. Hormesis: from marginalization to mainstream: a case for hormesis as the default dose-response model in risk assessment. Toxicol Apl Pharmacol. 2004;197:125–36.

    CAS  Google Scholar 

  20. Mattson M. Dietary factors, hormesis, health. Ageing Res Rev. 2008;7:43–8.

    PubMed  Google Scholar 

  21. Rattan SIS. Hormesis in aging. Ageing Res Rev. 2008;7:63–78.

    PubMed  Google Scholar 

  22. Kang HT, Hwang ES. 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci. 2006;78:1392–9.

    CAS  PubMed  Google Scholar 

  23. Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA. 2010. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol 2010;243,332–339.

  24. Singh S, Pandey S, Bhatt AN, Chaudhary R, Bhuria V, Soni R, Roy BG, Saluja D, Dwarakanath BS. Chronic dietary administration of the glycolytic inhibitor 2-deoxy-D-glucose (DG) inhibits the growth of implanted Ehrlich’s ascites tumor in mice. PLoS One 2015;DOI:https://doi.org/10.1371/journal.pone.0132089

  25. Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One. 2011;6(9):e24102. https://doi.org/10.1371/journal.pone.0024102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010;70:1388–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 2001;173:83–9.

    CAS  PubMed  Google Scholar 

  28. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004;324:269–75.

    CAS  PubMed  Google Scholar 

  29. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. 2005. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 2005;65,13–621.

  30. Chang JM, Chung JW, Jae HJ, Eh H, Son KR, Lee KC, et al. Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: In vivo investigation in normal rabbit model. Acad Radiol. 2007;14:85–92.

    PubMed  Google Scholar 

  31. Froelich L, Ding A, Hoyer S. Holeboard maze-learning deficits and brain monoaminergic neurotransmitter concentrations in rats after intracerebroventricular injection of 3-bromopyruvate. Pharmacol Biochem Behav. 1995;51:917–22.

    CAS  PubMed  Google Scholar 

  32. Jones AR, Porter KE, Dobbie MS. Renal and spermatozoal toxicity of alpha-bromohydrin, 3-bromolactate and 3-bromopyruvate. J Appl Toxicol. 1996;16:57–63.

    CAS  PubMed  Google Scholar 

  33. Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL. A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 2012;44:163–70.

    CAS  PubMed  Google Scholar 

  34. Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem. 2018;18:494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-Ul-Haq, IqraYasmin, Shahbaz M, Qaisrani TB, Shah ZA, Plygun S, Heydari M. Chrysin: pharmacological and therapeutic properties. Life Sci. 2019;235,116797. doi:https://doi.org/10.1016/j.lfs.2019.116797.

  36. Xu D, Jin J, Yu H, Zhao Z, Ma D, Zhang C, et al. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J Exp Clin Cancer Res. 2017;36:44. https://doi.org/10.1186/s13046-017-0514-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramírez-Espinosa JJ, Saldaña-Ríos J, García-Jiménez S, Villalobos-Molina R, Ávila-Villarreal G, Rodríguez-Ocampo AN, et al. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules. 2017;28:67. https://doi.org/10.3390/molecules23010067.

    Article  CAS  Google Scholar 

  38. Samarghandian S, Azimi-Nezhad M, Samini F, Farkhondeh T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2016;94:388–93. https://doi.org/10.1139/cjpp-2014-0412.

    Article  CAS  PubMed  Google Scholar 

  39. Tao L, Wei L, Liu Y, Ding Y, Liu X, Zhang X, et al. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol. 2017;125:12–25.

    CAS  PubMed  Google Scholar 

  40. Li W, Hao J, Zhang L, Cheng Z, Deng X, Shu G. Astragalin reduces hexokinase 2 through increasing miR-125b to inhibit the proliferation of hepatocellular carcinoma cells in vitro and in vivo. J Agric Food Chem. 2017;65:5961–72.

    CAS  PubMed  Google Scholar 

  41. Wu Y, Ou-Yang J-P, Wu K, Wang Y, Zhou YF, Wen CF. Hypoglycemic effect of astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin. 2005;26:345–52.

    CAS  PubMed  Google Scholar 

  42. Liu M, Wu K, Mao X, Wu Y, Ouyang J. Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation of PKB/GLUT4 signaling in skeletal muscle. J Ethnopharmacol. 2020;127:32–7.

    Google Scholar 

  43. Tian H, Lu J, He H, Zhang L, Dong Y, Yao H, et al. The effect of astragalus as an adjuvant treatment in type 2 diabetes mellitus: a (preliminary) meta-analysis. J Ethnopharmacol. 2016;191:206–15.

    PubMed  Google Scholar 

  44. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol. 2011;66A:191–201.

    CAS  Google Scholar 

  45. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;30:13703–17.

    Google Scholar 

  46. Weimer S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J, Merry TL, Dubuis S, Laube B, Pfeiffer AF, Schulz TJ, Guthke R, Platzer M, Zamboni N, Zarse K, Ristow M. D-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nature Commun. 2014;DOI: https://doi.org/10.1038/ncomms4563.

  47. Shintani T, Sakoguchi H, Yoshihara A, Izumori K, Sato M. d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: a new candidate dietary restriction mimetic. Biochem Biophys Res Commun. 2017;493:1528–33.

    CAS  PubMed  Google Scholar 

  48. Barrientos C, Racotta R, Quevedo L. Glucosamine attenuates increases of intraabdominal fat, serum leptin levels, and insulin resistance induced by a high-fat diet in rats. Nutr Res. 2010;30:791–800.

    CAS  PubMed  Google Scholar 

  49. Pocobelli G, Kristal AR, Patterson RE, Potter JD, Lampe JW, Kolar A, et al. Total mortality risk in relation to use of less-common dietary supplements. Am J Clin Nutr. 2010;91:1791–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi M, Inoue K, Yoshida M, Morikawa T, Shibutani M, Nishikawa A. Lack of chronic toxicity or carcinogenicity of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol. 2009;47:462–71.

    CAS  PubMed  Google Scholar 

  51. Lin H, Zeng J, Xie R, Schulz MJ, Tedesco R, Qu J, et al. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med Chem Lett. 2015;28:217–22. https://doi.org/10.1021/acsmedchemlett.5b00214 eCollection 2016 Mar 10.

    Article  CAS  Google Scholar 

  52. Rasschaert J, Kadiata MM, Malaisse WJ. Effects of D-mannoheptulose upon D-glucose metabolism in tumoral pancreatic islet cells. Mol Cell Biochem. 2001;226:77–81.

    CAS  PubMed  Google Scholar 

  53. Ramirez R, Rasschaert J, Laghmich A, Louchami K, Nadi AB, Jijakli H, et al. Uptake of D-mannoheptulose by normal and tumoral pancreatic islet cells. Int J Mol Med. 2001;7:631–8.

    CAS  PubMed  Google Scholar 

  54. Roth G, Hayek M, Massimino S, Davenport G, Arking R, Bartke A, Bonkowski M, Ingram D. 2009. Mannoheptulose: glycolytic inhibitor and novel caloric restriction mimetic. Exp Biol Abstract. 2009;553;1.

  55. Davenport G, Massimino S, Hayek M, Burr J, Michael Ceddia M, Yeh C-H, et al. Biological activity of avocado-derived mannoheptulose in dogs. Exp Biol Abstract. 2010;2010:725,4.

    Google Scholar 

  56. Hayek, MH, Massimino SP, Roth GS. Pet food compositions. February 23, 2010; United States Patent: 7,666,459.

  57. Hayek MH, Massimino SP, Roth GS. Pet food compositions. March 4, 2014; United States Patent: 8,663,729.

  58. Hayek MH, Massimino SP, Roth GS. Pet food compositions. May 20, 2014; United States: 8,728,559.

  59. Massimino S, Davenport GM, Hayek MG, Ceddia M, Burr JR, Yeh CH, et al. Dietary mannoheptulose fed as an avocado extract improves indices of immune response and oxidative stress in dogs. Exp Biol Abstract. 2011;728:1.

    Google Scholar 

  60. Massimino, SP, Davenport, GM, Hayek MG, Roth GS, Ingram DK. Method for decreasing inflammation and stress in a mammal. August 16, 2016; United States Patent: 9,415,083.

  61. Pitha J, Roth GS, Hayek MG, Massimino SP, Ceddia MA, Davenport, GM, Burr JR. Method of maintaining and/or attenuating a decline in quality of life. October 22, 2013; United States Patent: 8,563,522.

  62. McKnight LL, Flickinger EA, France J, Davenport GM, Shoveller AK, Mannoheptulose has differential effects on fasting and postprandial energy expenditure and respiratory quotient in adult Beagle dogs fed diets of different macronutrient contents. J Nutri Sci. 2014;doi:https://doi.org/10.1017/jns.2014.17.

  63. McKnight LL, Eyre R, Gooding MA, Davenport GM, Shoveller AK. Dietary mannoheptulose increases fasting serum glucagon like peptide-1 and post-prandial serum ghrelin concentrations in adult Beagle dogs. Animals. 2015;5:442–54. https://doi.org/10.3390/ani5020365.

    Article  PubMed  Google Scholar 

  64. Gooding MA, Davenport G, Atkinson JL, Duncan IJH, Shoveller AK. Dietary avocado-derived mannoheptulose results in increased energy expenditure after a 28-day feeding trial in cats. Intern J Appl Res Vet Med. 2014;12:130–40.

    Google Scholar 

  65. McKnight LL, Flickinger EA, Davenport GM, France J, Shoveller AK. Dietary mannoheptulose has differential effects on fasting and post-prandial glucose oxidation in Labrador retrievers. J Appl Animal Res. 2014;https://doi.org/10.1080/09712119.2014.978775

  66. McKnight LL, Root-McCaig J, Wright D, Davenport GM, France J, Shoveller AK. Dietary mannoheptulose does not significantly alter daily energy expenditure in adult Labrador retrievers. PLoS One. 2016;10:e0143324. https://doi.org/10.1371/journal.pone.0143324.

    Article  CAS  Google Scholar 

  67. McKnight LL, France J, Wright D, Davenport GM, Shoveller AK. Dietary mannoheptulose does not alter glucose or lipid metabolism in adult Labrador retrievers. Animal Physiol Animal Nutri 2017; https://doi.org/10.1111/jpn.12713

  68. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, et al. Rare sugar D-allulose: potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther. 2015;155:49–59.

    CAS  PubMed  Google Scholar 

  69. Shintani H, Shintani T, Ashida H, Sato M. Calorie cestriction mimetics: upstream-type compounds for modulating glucose metabolism. Nutrients. 2018;10:1821. https://doi.org/10.3390/nu10121821.

    Article  CAS  PubMed Central  Google Scholar 

  70. Chung YM, Hyun Lee J, Youl Kim D, Hwang SH, Hong YH, Kim SB, et al. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats. J Food Sci. 2012;77:H53–8. https://doi.org/10.1111/j.1750-3841.2011.02571.x.

    Article  CAS  PubMed  Google Scholar 

  71. Itoh K, Mizuno S, Hama S, Oshima W, Kawamata M, Hossain A, et al. Beneficial effects of supplementation of the rare sugar “D-allulose” against hepatic steatosis and severe obesity in Lep(ob)/Lep(ob) Mice. J Food Sci. 2015;80:H1619–26. https://doi.org/10.1111/1750-3841.12908.

    Article  CAS  PubMed  Google Scholar 

  72. Hossain A, Yamaguchi F, Hirose K, Matsunaga T, Sui L, Hirata Y, et al. Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats. Drug Des Devel Ther. 2015;9:525–35. https://doi.org/10.2147/DDDT.S71289 eCollection 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen J, Huang W, Zhang T, Lu M, Jiang B. Anti-obesity potential of rare sugar d-psicose by regulating lipid metabolism in rats. Food Funct. 2019;10:2417–25. https://doi.org/10.1039/c8fo01089g.

    Article  CAS  PubMed  Google Scholar 

  74. Nagata Y, Kanasaki A, Tamaru S, Tanaka K. D-Psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem. 2015;63:3168–76. https://doi.org/10.1021/jf502535p.

    Article  CAS  PubMed  Google Scholar 

  75. Iwasaki Y, Sendo M, Dezaki K, Hira T, Sato T, Nakata M, et al. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Commun. 2018;9:113. https://doi.org/10.1038/s41467-017-02488-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishii N, Nomizo T, Takashima S, Matsubara T, Tokuda M, Kitagawa H. Effects of D-allulose on glucose metabolism after the administration of sugar or food in healthy dogs. J Vet Med Sci. 2016;78:1657–62. https://doi.org/10.1292/jvms.16-0302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iida T, Kishimoto Y, Yoshikawa Y, Hayashi N, Okuma K, Toshi M, et al. Acute D-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. J Nutr Sci Vitaminol. 2008;54:511–4.

    CAS  PubMed  Google Scholar 

  78. Hayashi N, Iida T, Yamada T, Okura K, Takehara I, Yamamoto T, et al. Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects. Biosci Biotechnol Biochem. 2010;74:510–9.

    CAS  PubMed  Google Scholar 

  79. Noronha JC, Braunstein CR, Glenn AJ, Khan TA, Viguiliouk E, Noseworthy R, et al. The effect of small doses of fructose and allulose on postprandial glucose metabolism in type 2 diabetes: a double-blind, randomized, controlled, acute feeding, equivalence trial. Diabetes Obes Metab. 2018;20:236170–2370. https://doi.org/10.1111/dom.13374.

    Article  CAS  Google Scholar 

  80. Kimura T, Kanasaki A, Hayashi N, Yamada T, Iida T, Nagata Y, et al. D-Allulose enhances postprandial fat oxidation in healthy humans. Nutrition. 2017;43–44:16–20.

    PubMed  Google Scholar 

  81. Han Y, Kwon E.-Y, Yu M, Lee S, Kim H-J, Kim S-B, Kim Y, Choi M-S, A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: a randomized, double-blind, placebo-controlled trial. Nutrients 2018;10,160. doi: https://doi.org/10.3390/nu10020160.

  82. Shintani T, Kosuge Y, Ashida H. Glucosamine extends the lifespan of Caenorhabditis elegans via autophagy induction glucosamine extends nematode lifespan via autophagy induction. J Appl Glycosci. 2018;65:37–43.

    CAS  Google Scholar 

  83. Shintani T, Yamada T, Hayashi N, Iida T, Nagata Y, Ozaki N, et al. Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and insulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem. 2017;65:2888–94.

    CAS  PubMed  Google Scholar 

  84. Han Y, Choi BR, Kim SY, Kim SB, Kim YH, Kwon EY, Choi MS. Gastrointestinal tolerance of D-allulose in healthy and young adults. A non-randomized controlled trial. Nutrients. 2018; doi: https://doi.org/10.3390/nu10122010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald K. Ingram.

Ethics declarations

Conflict of interest

Donald K. Ingram is a stockholder and serves as Chief Scientific Officer for GeroScience and Prolongevity Technologies. Both companies are directed toward developing glycolytic inhibitors as an anti-aging intervention. George S. Roth is a stockholder and serves as Chief Executive Officer for GeroScience and Prolongevity Technologies. Both companies are directed toward developing glycolytic inhibitors as an anti-aging intervention.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingram, D.K., Roth, G.S. Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics. GeroScience 43, 1159–1169 (2021). https://doi.org/10.1007/s11357-020-00298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00298-7

Keywords

Navigation