Abstract
Brain aging and dementia are current problems that must be solved. The levels of imidazoline 2 receptors (I2-IRs) are increased in the brain in Alzheimer’s disease (AD) and other neurodegenerative diseases. We tested the action of the specific and selective I2-IR ligand B06 in a mouse model of accelerated aging and AD, the senescence-accelerated mouse prone 8 (SAMP8) model. Oral administration of B06 for 4 weeks improved SAMP8 mouse behavior and cognition and reduced AD hallmarks, oxidative stress, and apoptotic and neuroinflammation markers. Likewise, B06 regulated glial excitatory amino acid transporter 2 and N-methyl-d aspartate 2A and 2B receptor subunit protein levels. Calcineurin (CaN) is a phosphatase that controls the phosphorylation levels of cAMP response element-binding (CREB), apoptotic mediator BCL-2-associated agonist of cell death (BAD) and GSK3β, among other molecules. Interestingly, B06 was able to reduce the levels of the CaN active form (CaN A). Likewise, CREB phosphorylation, BAD gene expression, and other factors were modified after B06 treatment. Moreover, phosphorylation of a target of CaN, nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), was increased in B06-treated mice, impeding the transcription of genes related to neuroinflammation and neural plasticity. In summary, this I2 imidazoline ligand can exert its beneficial effects on age-related conditions by modulating CaN pathway action and affecting several molecular pathways, playing a neuroprotective role in SAMP8 mice.
Similar content being viewed by others
Abbreviations
- AD:
-
Alzheimer’s disease
- Aldh2:
-
Aldehyde dehydrogenase 2
- APP:
-
Amyloid precursor protein
- BAD:
-
BCL-2-Associated agonist of cell death
- Bdnf:
-
Brain-derived neurotrophic factor
- CaMKII:
-
Calcium calmodulin kinase II
- CaN:
-
Calcineurin
- CDK5:
-
Cyclin-dependent kinase
- cDNA:
-
Complementary DNA
- CREB:
-
cAMP response element-binding
- Ct:
-
Cycle threshold
- Cxcl-10:
-
C-X-C motif chemokine ligand 10
- (EAAT)2:
-
Excitatory amino acid transporter 2
- ERK:
-
Extracellular signal-regulated kinase
- GAPDH:
-
Glyceraldehyde-3-phosphate dehydrogenase
- GFAP:
-
Glial fibrillary acid protein
- GSK3β:
-
Glycogen synthase kinase 3β
- H2O2 :
-
Hydrogen peroxide
- Hmox 1:
-
Hemoxygenase 1
- I2-IR:
-
Imidazoline 2 receptors
- Ide:
-
Insulin-degrading enzyme
- Ifn-γ:
-
Interferon gamma
- iNOS:
-
Inducible nitric oxide synthase
- LTD:
-
Long-term depression
- LTP:
-
Long-term potentiation
- MAO:
-
Monoamine oxidase
- mRNA:
-
Messenger RNA
- Nep:
-
Neprilysin
- NFATc1:
-
Nuclear factor of activated T-cells, cytoplasmic 1
- NMDA:
-
N-Methyl-d-aspartate
- NMDAR:
-
N-Methyl-d-aspartate receptor
- NORT:
-
Novel object recognition test
- Nrf1:
-
Nuclear factor-erythroid 2-related factor 1
- OFT:
-
Open field test
- OS:
-
Oxidative stress
- p-Tau:
-
Hyperphosphorylated tau
- PD:
-
Parkinson’s disease
- PKA:
-
Protein kinase A
- PP2B:
-
Phosphatase 2B
- PVDF:
-
Polyvinylidene difluoride
- ROS:
-
Reactive oxygen species
- qPCR:
-
Real-time quantitative PCR
- RT-PCR:
-
Reverse transcription-polymerase chain reaction
- SAMP8:
-
Senescence-accelerated mouse prone 8
- sAPPα:
-
Soluble APP α
- sAPPβ:
-
Soluble APP β
- SDS-PAGE:
-
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- SEM:
-
Standard error of the mean
- TBS-T:
-
Tween 20 TBS
- TBS:
-
Tris-buffered saline
- TN:
-
Novel object, new location
- Tnf-α:
-
Tumor necrosis factor alpha
- TO:
-
Old object, old location
- TrkB:
-
Tropomyosin-related kinase B
- WB:
-
Western blotting
- ΔΔCt:
-
Cycle threshold method
References
Abás S, Estarellas C, Luque FJ, Escolano C. Easy access to (2-imidazolin-4-yl)phosphonates by a microwave assisted multicomponent reaction. Tetrahedron. 2015;71:2872–81. https://doi.org/10.1016/j.tet.2015.03.065.
Abás S, Erdozain AM, Keller B, Rodríguez-Arévalo S, Callado LF, García-Sevilla JA, et al. Neuroprotective effects of a structurally new family of high affinity imidazoline I2 receptors ligands. ACS Chem Neurosci. 2017;8(4):737–42. https://doi.org/10.1021/acschemneuro.6b00426.
Abás S, Rodríguez-Arévalo S, Bagán A, Griñán-Ferré C, Vasilopoulou F, Brocos-Mosquera I, et al. Bicyclic α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands for Alzheimer's Disease. J Med Chem. 2020 Apr 9;63(7):3610–3633. https://doi.org/10.1021/acs.jmedchem.9b02080.
Akiguchi I, Pallàs M, Budka H, Akiyama H, Ueno M, Han J, et al. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathology. 2017;37:293–305. https://doi.org/10.1111/neup.12373.
Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13:93–110. https://doi.org/10.1007/s10339-011-0430-z.
Baumgärtel K, Mansuy IM. Neural functions of CaN in synaptic plasticity and memory. Learn Mem. 2012;19:375–84. https://doi.org/10.1101/lm.027201.112.
Bezprozvanny I, Hiesinger PR. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration. Mol Neurodegener. 2013;8:23. https://doi.org/10.1186/1750-1326-8-23.
Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline receptors system: the past, the present and the future. Pharmacol Rev. 2020;72:1–30. https://doi.org/10.1124/pr.118.016311.
Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DG, Bortolotto ZA, et al. A pivotal role of GSK3 in synaptic plasticity. Front Mol Neurosci. 2012;5:13. https://doi.org/10.3389/fnmol.2012.00013.
Bridi MS, Hawk JD, Chatterjee S, Safe S, Abel T. Pharmacological activators of the NR4A nuclear receptors enhance LTP in a CREB/CBP-dependent manner. Neuropsychopharmacology. 2017;42(6):1243–53. https://doi.org/10.1038/npp.2016.253.
Canudas AM, Gutierrez-Cuesta J, Rodríguez MI, Acuña-Castroviejo D, Sureda FX, Camins A, et al. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev. 2005;126(12):1300–4.
Caraveo G, Auluck PK, Whitesell L, Chung CY, Baru V, Mosharov EV, et al. Calcineurin determines toxic versus beneficial responses to alpha-synuclein. Proc Natl Acad Sci U S A. 2014;111(34):E3544–52. https://doi.org/10.1073/pnas.1413201111.
Casanovas A, Olmos G, Ribera J, Boronat MA, Esquerda JE, García-Sevilla JA. Induction of reactive astrocytosis and prevention of motoneuron cell death by the I(2)-imidazoline receptor ligand LSL 60101. Br J Pharmacol. 2000;130(8):1767–76. https://doi.org/10.1038/sj.bjp.0703485.
Choi DH, Yun JH, Lee J. Protective effect of the imidazoline I2 receptor agonist 2-BFI on oxidative cytotoxicity in astrocytes. Biochem Biophys Res Commun. 2018;503(4):3011–6. https://doi.org/10.1016/j.bbrc.2018.08.086.
Cummings J. Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci. 2018;11:147–52. https://doi.org/10.1111/cts.12491.
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37. https://doi.org/10.1186/alzrt269.
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. 2018;4:195–214. https://doi.org/10.1016/j.trci.2018.03.009.
Escolano C, Pallás M, Griñán-Ferré C, Abás S, Callado LF, García-Sevilla JA. Synthetic I2 imidazoline receptor ligands for prevention or treatment of human brain disorders. WO 2019/121853 A1, June 2019.
Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation. 2014;11:158. https://doi.org/10.1186/s12974-014-0158-7.
Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32:16129–40.
Garau C, Miralles A, Garcia-Sevilla JA. Chronic treatment with selective I2-imidazoline receptor ligands decreases the content of pro-apoptotic markers in rat brain. J Psychopharmacol. 2013;27(2):123–34. https://doi.org/10.1177/0269881112450785.
García-Sevilla JA, Escribá PV, Walzer C, Bouras C, Guimón J. Imidazoline receptor proteins in brains of patients with Alzheimer’s disease. Neurosci Lett. 1998;247:95–8.
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2010;18(5):459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.
Griñán-Ferré C, Palomera-Avalos V, Puigoriol-Illamola D, Camins A, Porquet D, Plà V, et al. Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in SAMP8, a model of accelerated senescence. Exp Gerontol. 2016a;80:57–69. https://doi.org/10.1016/j.exger.2016.03.014.
Griñán-Ferré C, Puigoriol-Illamola D, Palomera-Ávalos V. Environmental enrichment modified epigenetic mechanisms in SAMP8 mouse hippocampus by reducing oxidative stress and inflammaging and achieving neuroprotection. Front Aging Neurosci. 2016b;8:1–12.
Griñán-Ferré C, Vasilopoulou F, Abàs S, Rodríguez-Arévalo S, Bagán A, Sureda FX, et al. Behavioral and cognitive improvement induced by novel imidazoline I2 receptor ligands in female SAMP8 mice. Neurotherapeutics. 2019;16:416–31. https://doi.org/10.1007/s13311-018-00681-5.
Horsley V, Pavlath GK. NFAT ubiquitous regulator of cell differentiation and adaptation. J Cell Biol. 2002;156(5):771–4. https://doi.org/10.1083/jcb.200111073.
Jiang SX, Zheng RY, Zeng JQ, Li XL, Han Z, Hou ST. Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists. Eur J Pharmacol. 2010;629(1–3):12–9. https://doi.org/10.1016/j.ejphar.2009.11.063.
Jin SM, Cho HJ, Kim YW, Hwang JY, Mook-Jung I. Aβ-induced Ca(2+) influx regulates astrocytic BACE1 expression via calcineurin/NFAT4 signals. Biochem Biophys Res Commun. 2012;425(3):649–55. https://doi.org/10.1016/j.bbrc.2012.07.123.
Kim S, Violette CJ, Ziff EB. Reduction of increased calcineurin activity rescues impaired homeostatic synaptic plasticity in presenilin 1 M146V mutant. Neurobiol Aging. 2015;36(12):3239–46. https://doi.org/10.1016/j.neurobiolaging.2015.09.007.
Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, et al. Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem. 1992;58:1643–51. https://doi.org/10.1111/j.1471-4159.1992.tb10036.x.
Li JX. Imidazoline I2 receptors: an update. Pharmacol Ther. 2017;178:48–56. https://doi.org/10.1016/j.pharmthera.2017.03.009.
Lin CH, Lee CC, Gean PW. Involvement of a CaN cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol. 2003;63:44–52. https://doi.org/10.1124/mol.63.1.44.
Liu J, Si Z, Li S, Huang Z, He Y, Zhang T, et al. Prevents cognitive impairment by inhibiting reactive astrogliosis in pilocarpine-induced status epilepticus rats. Front Cell Neurosci. 2018;11:428. https://doi.org/10.3389/fncel.2017.00428.
Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, et al. α-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem. 2012;120(3):440–52. https://doi.org/10.1111/j.1471-4159.2011.07576.x.
McDonald GR, Olivieri A, Ramsat RR, Holt A. On the formation and nature of the imidazoline I2 binding site on human monoamine oxidase-B. Pharmacol Res. 2010;62(6):475–88. https://doi.org/10.1016/j.phrs.2010.09.001.
Morley JE, Farr SA, Kumar VB, Armbrecht HJ. The SAMP8 mouse: a model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm Des. 2012;18:1123–30. https://doi.org/10.2174/138161212799315795.
Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D, Green K, Taglialatela G, Soto C. CaN inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog. 2010;6(10):e1001138. https://doi.org/10.1371/journal.ppat.1001138.
Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994;369(6480):486–8.
O’Donnell JC, Jackson JG, Robinson MB. Transient oxygen/glucose deprivation causes a delayed loss of mitochondria and increases spontaneous calcium signaling in astrocytic processes. J Neurosci. 2016;36:7109–27. https://doi.org/10.1523/JNEUROSCI.4518-15.2016.
Olmos G, Ribera J, Garcia-Sevilla JA. Imidazoli(di)ne compounds interact with the phencyclidine site of NMDA receptors in the rat brain. Eur J Pharmacol. 1996;310(2–3):273–6.
Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpcio Boronat M, Trullas R, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol. 1999;127(6):1317–26. https://doi.org/10.1038/sj.bjp.0702679.
Pallàs M. Senescence-accelerated mice P8: a tool to study brain aging and Alzheimer’s disease in a mouse model. ISRN Cell Biol. 2012;2012:1–12. https://doi.org/10.5402/2012/917167.
Pleiss MM, Sompol P, Kraner SD, Mohmmad Abdul H, Furman JL, Guttmann RP, et al. Calcineurin proteolysis in astrocytes: implications for impaired synaptic function. Biochim Biophys Acta. 2016;1862(9):1521–32. https://doi.org/10.1016/j.bbadis.2016.05.007.
Reese LC, Taglialatela G. A role of calcineurin in Alzheimer’s disease. Curr Neuropharmacol. 2011;9(4):685–92. https://doi.org/10.2174/157015911798376316.
Reynolds GP, Boulton RM, Pearson SJ, Hudson AL, Nutt DJ. Imidazoline binding sites in Huntington’s and Parkinson’s disease putamen. Eur J Pharmacol. 1996;301(1-3):R19–21.
Ruiz J, Martin I, Callado LF, Meana JJ, Barturen F, Garca-Sevilla JA. Non-adrenoreceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer’s disease. Neurosci Lett. 1993;160:109–12. https://doi.org/10.1016/0304-3940(93)90925-B.
Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80(4):1483–521.
Sée V, Loeffler JP. Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem. 2001;276(37):35049–59. https://doi.org/10.1074/jbc.M104988200.
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189. https://doi.org/10.1101/cshperspect.a006189.
Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P. 2002 protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem. 2002;277(50):48664–76. https://doi.org/10.1074/jbc.M20702920.
Sompol P, Norris C. Ca2+, astrocyte activation and calcineurin/NFAT signaling in age-related neurodegenerative diseases. Front Aging Neurosci. 2018;10:199. https://doi.org/10.3389/fnagi.2018.00199.
Sompol P, Furman JL, Pleiss MM, Kraner SD, Artiushin IA, Batten SR, Quintero JE, Simmerman LA, Beckett TL, Lovell MA, Murphy MP, Gerhardt GA, Norris CM. Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J Neurosci. 2017 37(25):6132–6148. https://doi.org/10.1523/JNEUROSCI.0877-17.2017.
Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, et al. Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A. 2003;100:1955–196. https://doi.org/10.1073/pnas.0136555100.
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: a potential therapeutic target (review). Int J Mol Med. 2017;39(6):1338–46. https://doi.org/10.3892/ijmm.2017.2962.
Szatmari E, Habas A, Yang P, Zheng JJ, Hagg T, Hetman M. A positive feedback loop between glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons. J Biol Chem. 2004;280(45):37526–35. https://doi.org/10.1074/jbc.M502699200.
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res. 2009;34:639–59. https://doi.org/10.1007/s11064-009-9922-y.
Tyacke RJ, Myers JFM, Venkataraman A, Mick I, Turton S, Passchier J, et al. Evaluation of 11C-BU99008, a PET ligand for the imidazoline 2 binding site in human brain. J Nucl Med. 2018;59(10):1597–602. https://doi.org/10.2967/jnumed.118.208009.
Vehmas AK, Kawas CH, Stewart WF, Troncoso JC. Immune reactive cells in senile plaques and cognitive decline in Alzheimer's disease. Neurobiol Aging. 2003;24(2):321–31. https://doi.org/10.1016/s0197-4580(02)00090-8.
Wang Y, Tang JL, Xu X, Zhou XP, Du J, Wang X, et al. NMDA receptors inhibit axonal outgrowth by inactivating AKT and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res. 2018;371(2):389–98. https://doi.org/10.1016/j.yexcr.2018.08.033.
Watanabe K, Uemura K, Asada M, Masato M, Akiyama H, Shinohama S, et al. The participation of insulin-like growth factor- binding protein 3 released by astrocytes in the pathology of Alzheimer’s disease. Mol Brain. 2015;8:82. https://doi.org/10.1186/s13041-015-0174-2.
Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, et al. Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson’s disease: an in vivo11C-BU99008 PET study. Brain. 2019;142(10):3116–28. https://doi.org/10.1093/brain/awz260.
Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci. 2010;30(7):2636–49. https://doi.org/10.1523/JNEUROSCI.4456-0.
Xiong TQ, Chen LM, Tan BH, Guo CY, Li YN, Zhang YF, et al. The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Res. 2018;140:138–47. https://doi.org/10.1016/j.eplepsyres.2018.01.007.
Yu D, Tong L, Song G, Lin W, Zhang L, Bai W, et al. Tau binds both subunits of CaN, and binding is impaired by calmodulin. Biochim Biophys Acta. 2008;1783:2255–61. https://doi.org/10.1016/j.bbamcr.2008.06.015.
Zhang F, Kang Z, Li W, Xiao Z, Zhou X. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J Clin Neurosci. 2012;19(7):946–9. https://doi.org/10.1016/j.jocn.2011.12.022.
Zhao H, Jin-Long Y, Susan XJ, Sheng-Tao H, Rong-Yuan Z. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection. PLoS ONE. 2013;8(5):e64894. https://doi.org/10.1371/journal.pone.0064894.
Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, et al. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech Ageing Dev. 2001;123:39–46. https://doi.org/10.1016/S0047-6374(01)00342-6.
Acknowledgements
We strongly acknowledge the advice of Dr. Andrés G. Fernández (our mentor in the CaixaImpulse 2018 program) for invaluable advice. This study was supported by Ministerio de Economía y Competitividad of Spain and FEDER (PID2019-107991RB-I00, PID2019-106285RB-I00) and 2017SGR106 (AGAUR, Catalonia). The project leading to these results has received funding from “la Caixa” Foundation (ID 100010434), under agreement CI18-00002. F.V. thanks the UB for APIF grant (UB2016); S. R.-A. to Generalitat de Catalunya, (2018FI-B-00227) and A. B. for APIF grant to Institute of Biomedicine (UB2018).
Author information
Authors and Affiliations
Contributions
CGF, MP and CE contributed to conceptualization and funding acquisition. SA, SRA and AB synthesized and purified B06. CGF and FV performed experiments and formal data analysis. CGF, CE, FV and MP wrote, reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Declarations
Not applicable.
Competing interests
The authors have no competing interests to declare.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Vasilopoulou, F., Griñán-Ferré, C., Rodríguez-Arévalo, S. et al. I2 imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. GeroScience 43, 965–983 (2021). https://doi.org/10.1007/s11357-020-00281-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11357-020-00281-2