Skip to main content
Log in

Mitochondrial-derived peptides in aging and age-related diseases

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in the levels of mitochondrial-derived peptides contributes to aging and age-related diseases. In particular, we discuss how mitochondrial-derived peptides, humanin and MOTS-c, contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and cognitive decline. Genetic variations in the coding region of humanin and MOTS-c that are associated with age-related diseases are also reviewed, with particular emphasis placed on how mitochondrial variants might, in turn, regulate MDP expression and age-related phenotypes. Taken together, these observations suggest that mitochondrial-derived peptides influence or regulate a number of key aspects of aging and that strategies directed at increasing mitochondrial-derived peptide levels might have broad beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102–11. https://doi.org/10.1038/s41467-019-13668-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12:77–85. https://doi.org/10.1016/j.mito.2011.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hockenbery DM. Mitochondria and cell death. Humana Press; 2016.

  4. Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Mol Cell. 2004;14:1–15. https://doi.org/10.1016/s1097-2765(04)00179-0.

    Article  CAS  PubMed  Google Scholar 

  5. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–66. https://doi.org/10.1016/j.molcel.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54:823–7. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x.

    Article  CAS  PubMed  Google Scholar 

  7. Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. Mitochondrial function and diabetes: consequences for skeletal and cardiac muscle metabolism. Antioxid Redox Signal. 2016;24:39–51. https://doi.org/10.1089/ars.2015.6291.

    Article  CAS  PubMed  Google Scholar 

  8. Siasos G, Tsigkou V, Kosmopoulos M, et al. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med. 2018;6:256. https://doi.org/10.21037/atm.2018.06.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3:35–40. https://doi.org/10.1111/j.1474-9728.2003.00079.x.

    Article  CAS  PubMed  Google Scholar 

  10. Carey BW, Finley LWS, Cross JR, et al. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518:413–6. https://doi.org/10.1038/nature13981.

    Article  CAS  PubMed  Google Scholar 

  11. Baixauli F, Acin-Perez R, Villarroya-Beltri C, et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 2015;22:485–98. https://doi.org/10.1016/j.cmet.2015.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma R, Ramanathan A. The aging metabolome-biomarkers to hub metabolites. Proteomics. 2020;20:e1800407. https://doi.org/10.1002/pmic.201800407.

    Article  CAS  PubMed  Google Scholar 

  13. Müller M, Ahumada-Castro U, Sanhueza M, et al. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Front Neurosci. 2018;12:470. https://doi.org/10.3389/fnins.2018.00470.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bohovych I, Khalimonchuk O. Sending out an SOS: mitochondria as a signaling hub. Front Cell Dev Biol. 2016;4:109. https://doi.org/10.3389/fcell.2016.00109.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab. 2013;24:222–8. https://doi.org/10.1016/j.tem.2013.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim KH, Son JM, Benayoun BA, Lee C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 2018;28:516–524.e7. https://doi.org/10.1016/j.cmet.2018.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee C, Zeng J, Drew BG, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–54. https://doi.org/10.1016/j.cmet.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cobb LJ, Lee C, Xiao J, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY). 2016;8:796–809. https://doi.org/10.18632/aging.100943.

    Article  CAS  Google Scholar 

  19. Yen K, Mehta HH, Kim SJ, et al. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY). 2020. https://doi.org/10.18632/aging.103534.

  20. Qin Q, Delrio S, Wan J, et al. Downregulation of circulating MOTS-c levels in patients with coronary endothelial dysfunction. Int J Cardiol. 2018;254:23–7. https://doi.org/10.1016/j.ijcard.2017.12.001.

    Article  PubMed  Google Scholar 

  21. Du C, Zhang C, Wu W, et al. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance. Pediatr Diabetes. 2018. https://doi.org/10.1111/pedi.12685.

  22. Gong Z, Tas E, Muzumdar R. Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne). 2014;5:210. https://doi.org/10.3389/fendo.2014.00210.

    Article  Google Scholar 

  23. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23:1060–5. https://doi.org/10.1016/j.cmet.2016.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saghatelian A, Couso J-P. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol. 2015;11:909–16. https://doi.org/10.1038/nchembio.1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol. 2013;50:R11–9. https://doi.org/10.1530/JME-12-0203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim SJ, Xiao J, Wan J, et al. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol Lond. 2017;595:6613–21. https://doi.org/10.1113/JP274472.

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto Y, Niikura T, Tajima H, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98:6336–41. https://doi.org/10.1073/pnas.101133498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto Y, Ito Y, Niikura T, et al. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 2001;283:460–8. https://doi.org/10.1006/bbrc.2001.4765.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Z-W, Liu D-X. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins. Acta Pharmacol Sin. 2018;39:1012–21. https://doi.org/10.1038/aps.2017.169.

    Article  CAS  PubMed  Google Scholar 

  30. Gong Z, Tasset I, Diaz A, et al. Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol. 2018;217:635–47. https://doi.org/10.1083/jcb.201606095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao J, Kim SJ, Cohen P, Yen K. Humanin: functional interfaces with IGF-I. Growth Hormon IGF Res. 2016;29:21–7.

    Article  CAS  Google Scholar 

  32. Chai G-S, Duan D-X, Ma R-H, et al. Humanin attenuates Alzheimer-like cognitive deficits and pathological changes induced by amyloid β-peptide in rats. Neurosci Bull. 2014;30:923–35. https://doi.org/10.1007/s12264-014-1479-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan L, Liu X-J, Han W-N, et al. [Gly14]-humanin protects against amyloid β peptide-induced impairment of spatial learning and memory in rats. Neurosci Bull. 2016;32:374–82. https://doi.org/10.1007/s12264-016-0041-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maftei M, Tian X, Manea M, et al. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci. 2012;18:373–82. https://doi.org/10.1002/psc.2404.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SJ, Guerrero N, Wassef G, et al. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age- dependent signaling differences in the hippocampus. Oncotarget. 2016;7(30):46899–912. https://doi.org/10.18632/oncotarget.10380.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hashimoto Y, Suzuki H, Aiso S, et al. Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection. Life Sci. 2005;77:3092–104. https://doi.org/10.1016/j.lfs.2005.03.031.

    Article  CAS  PubMed  Google Scholar 

  37. Tajima H, Kawasumi M, Chiba T, et al. A humanin derivative, S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J Neurosci Res. 2005;79:714–23. https://doi.org/10.1002/jnr.20391.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang W, Zhang W, Li Z, et al. S14G-humanin improves cognitive deficits and reduces amyloid pathology in the middle-aged APPswe/PS1dE9 mice. Pharmacol Biochem Behav. 2012;100:361–9. https://doi.org/10.1016/j.pbb.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  39. Niikura T, Sidahmed E, Hirata-Fukae C, et al. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice. PLoS One. 2011;6:e16259. https://doi.org/10.1371/journal.pone.0016259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zárate SC, Traetta ME, Codagnone MG, et al. Humanin, a mitochondrial-derived peptide released by astrocytes, prevents synapse loss in hippocampal neurons. Front Aging Neurosci. 2019;11:123. https://doi.org/10.3389/fnagi.2019.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murakami M, Nagahama M, Maruyama T, Niikura T. Humanin ameliorates diazepam-induced memory deficit in mice. Neuropeptides. 2017;62:65–70. https://doi.org/10.1016/j.npep.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  42. Hui-Fang L, Cai L, Wang X-M, Golden AR. Ethnic disparities in prevalence and clustering of cardiovascular disease risk factors in rural Southwest China. BMC Cardiovasc Disord. 2019;19:1–8. https://doi.org/10.1186/s12872-019-1185-1.

    Article  Google Scholar 

  43. Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophys Rev. 2017;9(2):131–7. https://doi.org/10.1007/s12551-017-0255-9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muzumdar RH, Huffman DM, Atzmon G, et al. Humanin: a novel central regulator of peripheral insulin action. PLoS One. 2009;4:e6334. https://doi.org/10.1371/journal.pone.0006334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin Q, Mehta H, Yen K, et al. Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice. Am J Physiol Heart Circ Physiol. 2018;315:H1127–36. https://doi.org/10.1152/ajpheart.00685.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang X, Urbieta-Caceres VH, Eirin A, et al. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice. Life Sci. 2012;91:199–206. https://doi.org/10.1016/j.lfs.2012.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thummasorn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. High-dose humanin analogue applied during ischemia exerts cardioprotection against ischemia/reperfusion injury by reducing mitochondrial dysfunction. Cardiovasc Ther. 2017;35:e12289. https://doi.org/10.1111/1755-5922.12289.

    Article  CAS  Google Scholar 

  48. Yang Y, Gao H, Zhou H, et al. The role of mitochondria-derived peptides in cardiovascular disease: recent updates. Biomed Pharmacother. 2019. https://doi.org/10.1016/j.biopha.2019.109075.

  49. Zapała B, Kaczyński Ł, Kieć-Wilk B, et al. Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep. 2010;62:767–77. https://doi.org/10.1016/S1734-1140(10)70337-6.

    Article  PubMed  Google Scholar 

  50. Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, et al. Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity. Mitochondrion. 2018;38:31–40. https://doi.org/10.1016/j.mito.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  51. Lue Y, Swerdloff R, Wan J, et al. The potent humanin analogue (HNG) protects germ cells and leucocytes while enhancing chemotherapy-induced suppression of cancer metastases in male mice. Endocrinology. 2015;156:4511–21. https://doi.org/10.1210/en.2015-1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu W-W, Wang S-R, Liu Z-H, et al. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells. Biochem Biophys Res Commun. 2017;482:93–9. https://doi.org/10.1016/j.bbrc.2016.10.138.

    Article  CAS  PubMed  Google Scholar 

  53. Nashine S, Cohen P, Chwa M, et al. Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death Dis. 2017;8:e2951. https://doi.org/10.1038/cddis.2017.348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sreekumar PG, Ishikawa K, Spee C, et al. The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci. 2016;57:1238–53. https://doi.org/10.1167/iovs.15-17053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee C, Wan J, Miyazaki B, et al. IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell. 2014;13:958–61. https://doi.org/10.1111/acel.12243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruby JG, Smith M, Buffenstein R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife. 2018;7:844. https://doi.org/10.7554/eLife.31157.

    Article  Google Scholar 

  57. Yen K, Wan J, Mehta HH, et al. Humanin prevents age-related cognitive decline in mice and is associated with improved cognitive age in humans. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-32616-7.

  58. Lorenzini A, Salmon AB, Lerner C, et al. Mice producing reduced levels of insulin-like growth factor type 1 display an increase in maximum, but not mean, life span. J Gerontol A Biol Sci Med Sci. 2014;69:410–9. https://doi.org/10.1093/gerona/glt108.

    Article  CAS  PubMed  Google Scholar 

  59. Lee C, Kim KH, Cohen P. MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med. 2016;100:182–7. https://doi.org/10.1016/j.freeradbiomed.2016.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim SJ, Mehta HH, Wan J, et al. Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging (Albany NY). 2018;10:1239–56. https://doi.org/10.18632/aging.101463.

    Article  CAS  Google Scholar 

  61. D'Souza RF, Woodhead JST, Hedges CP, et al. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging (Albany NY). 2020;12:5244–58. https://doi.org/10.18632/aging.102944.

    Article  CAS  PubMed Central  Google Scholar 

  62. Lu H, Wei M, Zhai Y, et al. MOTS-c peptide regulates adipose homeostasis to prevent ovariectomy-induced metabolic dysfunction. J Mol Med. 2019;50:19–3. https://doi.org/10.1007/s00109-018-01738-w.

    Article  CAS  Google Scholar 

  63. Ming W, Lu G, Xin S, et al. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation. Biochem Biophys Res Commun. 2016;476:412–9. https://doi.org/10.1016/j.bbrc.2016.05.135.

    Article  CAS  PubMed  Google Scholar 

  64. Reynolds J, Lai RW, Woodhead JST, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. bioRxiv 2019; 25:2019.12.22.886432. doi: https://doi.org/10.1101/2019.12.22.886432.

  65. Woodhead JST, D’Souza RF, Hedges CP, et al. High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. J Appl Physiol. 2020;128:1346–54. https://doi.org/10.1152/japplphysiol.00032.2020.

    Article  CAS  PubMed  Google Scholar 

  66. Kokkinos P, Myers J, Kokkinos JP, et al. Exercise capacity and mortality in black and white men. Circulation. 2008;117:614–22. https://doi.org/10.1161/CIRCULATIONAHA.107.734764.

    Article  PubMed  Google Scholar 

  67. Blair SN, Kohl HW, Paffenbarger RS, et al. Physical-fitness and all-cause mortality - a prospective-study of healthy-men and women. JAMA. 1989;262:2395–401.

    Article  CAS  Google Scholar 

  68. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801–9. https://doi.org/10.1503/cmaj.051351.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fan W, Evans RM. Exercise mimetics: impact on health and performance. Cell Metab. 2017;25:242–7. https://doi.org/10.1016/j.cmet.2016.10.022.

    Article  CAS  PubMed  Google Scholar 

  70. Kazuno A-A, Munakata K, Nagai T, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2006;2:e128. https://doi.org/10.1371/journal.pgen.0020128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fuku N, Pareja-Galeano H, Zempo H, et al. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell. 2015;14:921–3. https://doi.org/10.1111/acel.12389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zempo H, Kim SJ, Fuku N, et al. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. bioRxiv. 2019;53:695585. https://doi.org/10.1101/695585.

    Article  Google Scholar 

  73. Edghill EL, Flanagan SE, Patch A-M, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008;57:1034–42. https://doi.org/10.2337/db07-1405.

    Article  CAS  PubMed  Google Scholar 

  74. Wabitsch M, Funcke J-B, Schnurbein v J, et al. Severe early-onset obesity due to bioinactive leptin caused by a p.N103K mutation in the leptin gene. J Clin Endocrinol Metab. 2015;100:3227–30. https://doi.org/10.1210/jc.2015-2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by an Ellison/AFAR Postdoctoral Fellowship in Aging Research Program to SK.

Author information

Authors and Affiliations

Authors

Contributions

SK, BM, HK, AS, MF, and KY all participated in the writing of this manuscript.

Corresponding author

Correspondence to Su-Jeong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Miller, B., Kumagai, H. et al. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience 43, 1113–1121 (2021). https://doi.org/10.1007/s11357-020-00262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00262-5

Keywords

Navigation