Skip to main content

Advertisement

Log in

Brain angiotensin II and angiotensin IV receptors as potential Alzheimer’s disease therapeutic targets

  • Review Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD’s primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS’s involvement in AD and highlight putative mechanisms of action underlying ARB’s beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
. Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed HA, Ishrat T, Pillai B, Bunting KM, Patel A, Vazdarjanova A, et al. Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals - a randomized double-blind pre-clinical study. Behav Brain Res. 2018;346:29–40.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HA, Ishrat T, Pillai B, Bunting KM, Vazdarjanova A, Waller JL, et al. Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals-a randomized double- blind pre-clinical study. Behav Brain Res. 2019;359:560–9.

    Article  CAS  PubMed  Google Scholar 

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001;276(52):48623–6.

    Article  CAS  PubMed  Google Scholar 

  • Albiston AL, Mustafa T, McDowall SG, Mendelsohn FAO, Lee J, Chai SY. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab. 2003;14(2):72–7.

    Article  CAS  PubMed  Google Scholar 

  • Anderson C, Teo K, Gao P, Arima H, Dans A, Unger T, et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011;10(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  • Aucoin JS, Jiang P, Aznavour N, Tong XK, Buttini M, Descarries L, et al. Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer’s disease. Neuroscience. 2005;132(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  • Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW. Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J Pharmacol Exp Ther. 2011;339(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoist CC, Kawas LH, Zhu M, Tyson KA, Stillmaker L, Appleyard SM, et al. The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-met system. J Pharmacol Exp Ther. 2014;351(2):390–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond). 2011;121(7):297–303.

    Article  CAS  Google Scholar 

  • Braszko JJ, Kupryszewski G, Witczuk B, Wiśniewski K. Angiotensin II-(3-8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats. Neuroscience. 1988;27(3):777–83.

    Article  CAS  PubMed  Google Scholar 

  • Braszko JJ, Walesiuk A, Wielgat P. Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV. J Renin-Angiotensin-Aldosterone Syst. 2006;7(3):168–74.

    Article  CAS  PubMed  Google Scholar 

  • Capettini LS, et al. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. 2012;18(7):963–70.

    Article  CAS  PubMed  Google Scholar 

  • Carey RM. AT2 receptors: potential therapeutic targets for hypertension. Am J Hypertens. 2017;30(4):339–47.

    CAS  PubMed  Google Scholar 

  • Chang F, Patel T, Schulz ME. The “rising tide” of dementia in Canada: what does it mean for pharmacists and the people they care for? Can Pharm J (Ott). 2015;148(4):193–9.

    Article  Google Scholar 

  • Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JL, Zhang DL, Sun Y, Zhao YX, Zhao KX, Pu D, et al. Angiotensin-(1-7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via mas receptor activation. Neuroscience. 2017;346:267–77.

    Article  CAS  PubMed  Google Scholar 

  • Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH. Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol. 2005;167(1):151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WC, Ho WC, Lin MH, Lee HH, Yeh YC, Wang JD, et al. Angiotension receptor blockers reduce the risk of dementia. J Hypertens. 2014;32(4):938–47.

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes D, Poittevin M, Dere E, Broquères-You D, Bonnin P, Benessiano J, et al. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease. Hypertension. 2015;65(1):218–24.

    Article  CAS  PubMed  Google Scholar 

  • Claassen JA. New cardiovascular targets to prevent late onset Alzheimer disease. Eur J Pharmacol. 2015;763(Pt A):131–4.

    Article  CAS  PubMed  Google Scholar 

  • Culman J, von Heyer C, Piepenburg B, Rascher W, Unger T. Effects of systemic treatment with irbesartan and losartan on central responses to angiotensin II in conscious, normotensive rats. Eur J Pharmacol. 1999;367(2–3):255–65.

    Article  CAS  PubMed  Google Scholar 

  • Dandapat A, Hu CP, Chen J, Liu Y, Khan JA, Remeo F, et al. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem Biophys Res Commun. 2008;366(4):871–7.

    Article  CAS  PubMed  Google Scholar 

  • Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH, et al. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010;13(2–3):195–201.

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JC. Vascular risk factor detection and control may prevent Alzheimer’s disease. Ageing Res Rev. 2010;9(3):218–25.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–15.

    Article  CAS  PubMed  Google Scholar 

  • Duron E, Hanon O. Vascular risk factors, cognitive decline, and dementia. Vasc Health Risk Manag. 2008;4(2):363–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet. 1999;354(9182):919–20.

    Article  CAS  PubMed  Google Scholar 

  • Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Xia H, Santos RA, Speth R, Lazartigues E. Angiotensin-converting enzyme 2: a new target for neurogenic hypertension. Exp Physiol. 2010;95(5):601–6.

    Article  CAS  PubMed  Google Scholar 

  • Ferrington L, Palmer LE, Love S, Horsburgh KJ, Kelly PA, Kehoe PG. Angiotensin II-inhibition: effect on Alzheimer’s pathology in the aged triple transgenic mouse. Am J Transl Res. 2012;4(2):151–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting renin-angiotensin system against Alzheimer’s disease. Front Pharmacol. 2018;9:440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985). 2006;100(1):328–35.

    Article  CAS  Google Scholar 

  • Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777–81.

    Article  CAS  PubMed  Google Scholar 

  • Goel R, Bhat SA, Hanif K, Nath C, Shukla R. Angiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-kappaB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol Neurobiol. 2018;55(2):1725–39.

    Article  CAS  PubMed  Google Scholar 

  • Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grothe MJ, Heinsen H, Amaro E Jr, Grinberg LT, Teipel SJ. Cognitive correlates of basal forebrain atrophy and associated cortical hypometabolism in mild cognitive impairment. Cereb Cortex. 2016;26(6):2411–2426.

  • Haberl RL, Decker PJ, Einhaupl KM. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ Res. 1991;68(6):1621–7.

    Article  CAS  PubMed  Google Scholar 

  • Hamel E, Nicolakakis N, Aboulkassim T, Ongali B, Tong XK. Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol. 2008;93(1):116–20.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Suzuki H, Saruta T. Segmental differences in angiotensin receptor subtypes in interlobular artery of hydronephrotic rat kidneys. Am J Phys. 1993;265(6 Pt 2):F881–5.

    CAS  Google Scholar 

  • Henrion D, Kubis N, Levy BI. Physiological and pathophysiological functions of the AT(2) subtype receptor of angiotensin II: from large arteries to the microcirculation. Hypertension. 2001;38(5):1150–7.

    Article  CAS  PubMed  Google Scholar 

  • Ho JK, Nation DA, Alzheimer’s Disease Neuroimaging Initiative. Memory is preserved in older adults taking AT1 receptor blockers. Alzheimers Res Ther. 2017;9(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.

    Article  CAS  PubMed  Google Scholar 

  • Iturria-Medina Y, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018;19(3):876.

  • Jellinger KA. The enigma of mixed dementia. Alzheimers Dement. 2007;3(1):40–53.

    Article  PubMed  Google Scholar 

  • Jiang T, Gao L, Shi J, Lu J, Wang Y, Zhang Y. Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol Res. 2013;67(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, et al. Angiotensin-(1-7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014;171(18):4222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Zhang YD, Zhou JS, Zhu XC, Tian YY, Zhao HD, et al. Angiotensin-(1-7) is reduced and inversely correlates with tau hyperphosphorylation in animal models of Alzheimer’s disease. Mol Neurobiol. 2016;53(4):2489–97.

    Article  CAS  PubMed  Google Scholar 

  • Jing F, Mogi M, Sakata A, Iwanami J, Tsukuda K, Ohshima K, et al. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory. J Cereb Blood Flow Metab. 2012;32(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  • Kalaria RN. Cerebral vessels in ageing and Alzheimer’s disease. Pharmacol Ther. 1996;72(3):193–214.

    Article  CAS  PubMed  Google Scholar 

  • Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County study. Arch Neurol. 2006;63(5):686–92.

    Article  PubMed  Google Scholar 

  • Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramar EA, et al. Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow. Regul Pept. 1998;74(2–3):185–92.

    Article  CAS  PubMed  Google Scholar 

  • Kramar EA, et al. The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res. 2001;897(1–2):114–21.

    Article  CAS  PubMed  Google Scholar 

  • Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane CA, et al. Associations between vascular risk across adulthood and brain pathology in late life: evidence from a British Birth Cohort. JAMA Neurol. 2019;18(10):942–952.

  • Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s disease neuroimaging initiative (ADNI). Neuroimage. 2009;45(4):1107–16.

    Article  PubMed  Google Scholar 

  • Lee J, Chai SY, Mendelsohn FAO, Morris MJ, Allen AM. Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7. Neuropharmacology. 2001;40(4):618–23.

    Article  CAS  PubMed  Google Scholar 

  • Lennon MJ, Makkar SR, Crawford JD, Sachdev PS. Midlife hypertension and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2019;71(1):307–16.

    Article  PubMed  Google Scholar 

  • Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, et al. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener. 2014;9:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76(17):1485–91.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tejada T, Lambert JP, Nicholson CK, Yahiro E, Ambai VT, et al. Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor-gamma. Am J Cardiovasc Dis. 2016;6(3):118–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu S, Tanabe C, Maeda T, Zou K, Komano H. Differential effects of angiotensin II receptor blockers on Abeta generation. Neurosci Lett. 2014;567:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Wu L, Jiang T, Wang Y, Zhao H, Gao Q, et al. Angiotensin AT2 receptor stimulation inhibits activation of NADPH oxidase and ameliorates oxidative stress in rotenone model of Parkinson’s disease in CATH.a cells. Neurotoxicol Teratol. 2015;47:16–24.

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger JA, Reitz C, Honig LS, Tang MX, Shea S, Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65(4):545–51.

    Article  CAS  PubMed  Google Scholar 

  • Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol. 2015;65(3):226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer K, Volk S, Gerbaldo H. Auguste D and Alzheimer’s disease. Lancet. 1997;349(9064):1546–9.

    Article  CAS  PubMed  Google Scholar 

  • McCoy AT, Benoist CC, Wright JW, Kawas LH, Bule-Ghogare JM, Zhu M, et al. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J Pharmacol Exp Ther. 2013;344(1):141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, Katovich MJ, et al. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol. 2011;96(10):1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65(2):809–48.

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, et al. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008;375(3):446–9.

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000;20(11):4050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasser M, Clere N, Botelle L, Javellaud J, Oudart N, Faure S, et al. Opposite effects of angiotensins receptors type 2 and type 4 on streptozotocin induced diabetes vascular alterations in mice. Cardiovasc Diabetol. 2014;13:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naveri L, Stromberg C, Saavedra JM. Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab. 1994;14(6):1096–9.

    Article  CAS  PubMed  Google Scholar 

  • Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P, et al. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci. 2008;28(37):9287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31(10):2478–86.

    Article  CAS  PubMed  Google Scholar 

  • Oba R, Igarashi A, Kamata M, Nagata K, Takano S, Nakagawa H. The N-terminal active Centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur J Neurosci. 2005;21(3):733–40.

    Article  PubMed  Google Scholar 

  • O’Brien JT, Markus HS. Vascular risk factors and Alzheimer’s disease. BMC Med. 2014;12:218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, et al. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis. 2014;68:126–36.

    Article  CAS  PubMed  Google Scholar 

  • Oscanoa TJ, Amado J, Vidal X, Romero-Ortuno R. Angiotensin-receptor blockers (ARBs) and risk of Alzheimer’s disease: a meta-analysis. Curr Clin Pharmacol. 2020.

  • Paris JJ, Eans SO, Mizrachi E, Reilley KJ, Ganno ML, McLaughlin JP. Central administration of angiotensin IV rapidly enhances novel object recognition among mice. Neuropharmacology. 2013;70:247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BM, Cha SA, Lee SH, Kim SH. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides. 2016;79:66–74.

    Article  CAS  PubMed  Google Scholar 

  • Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, et al. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci. 2005;25(7):1769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MH, Kim H, Lim J, Ahn JS, Koh JY. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Mol Brain. 2013;6:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pase MP, Satizabal CL, Seshadri S. Role of improved vascular health in the declining incidence of dementia. Stroke. 2017;48(7):2013–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JM, et al. Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. Am J Phys. 1998;275(6 Pt 1):L1061–8.

    CAS  Google Scholar 

  • Poirier J, Bertrand P, Poirier J, Kogan S, Gauthier S, Poirier J, et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet. 1993;342(8873):697–9.

    Article  CAS  PubMed  Google Scholar 

  • Prusty SK, Sahu PK, Subudhi BB. Angiotensin mediated oxidative stress and neuroprotective potential of antioxidants and AT1 receptor blockers. Mini Rev Med Chem. 2017;17(6):518–28.

    Article  CAS  PubMed  Google Scholar 

  • Rompe F, Artuc M, Hallberg A, Alterman M, Ströder K, Thöne-Reineke C, et al. Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension. 2010;55(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  • Rossi GP. Losartan metabolite EXP3179: an AT1-receptor-independent treatment strategy for patients with the metabolic syndrome? Hypertension. 2009;54(4):710–2.

    Article  CAS  PubMed  Google Scholar 

  • Royea J, Zhang L, Tong XK, Hamel E. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37(22):5562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royea J, et al. AT2R’s (angiotensin II type 2 receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease. Hypertension. 2020a; HYPERTENSIONAHA11914431.

  • Royea J, Martinot P, Hamel E. Memory and cerebrovascular deficits recovered following angiotensin IV intervention in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2020b;134:104644.

    Article  CAS  PubMed  Google Scholar 

  • Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer’s disease? An overview of research evidence in the elderly patient population. J Postgrad Med. 2016;62(4):242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson AK, Irvine JC, Shihata WA, Dragoljevic D, Lumsden N, Huet O, et al. Compound 21, a selective agonist of angiotensin AT2 receptors, prevents endothelial inflammation and leukocyte adhesion in vitro and in vivo. Br J Pharmacol. 2016;173(4):729–40.

    Article  CAS  PubMed  Google Scholar 

  • Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens. 2006;24(12):2417–22.

    Article  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.

    Article  CAS  PubMed  Google Scholar 

  • Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.

    Article  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simic G, et al. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol. 1997;379(4):482–94.

    Article  CAS  PubMed  Google Scholar 

  • Siragy HM, Carey RM. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3′,5′-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest. 1996;97(8):1978–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoog I. Vascular aspects in Alzheimer’s disease. J Neural Transm Suppl. 2000;59:37–43.

    CAS  PubMed  Google Scholar 

  • Skoog I, Gustafson D. Update on hypertension and Alzheimer’s disease. Neurol Res. 2006;28(6):605–11.

    Article  PubMed  Google Scholar 

  • Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62(4):406–13.

    Article  PubMed  Google Scholar 

  • Stromberg C, Naveri L, Saavedra JM. Nonpeptide angiotensin AT1 and AT2 receptor ligands modulate the upper limit of cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab. 1993;13(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato K, et al. Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension. 2009;54(6):1345–52.

    Article  CAS  PubMed  Google Scholar 

  • Thomas WG, Mendelsohn FA. Angiotensin receptors: form and function and distribution. Int J Biochem Cell Biol. 2003;35(6):774–9.

    Article  CAS  PubMed  Google Scholar 

  • Tong XK, Nicolakakis N, Fernandes P, Ongali B, Brouillette J, Quirion R, et al. Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol Dis. 2009;35(3):406–14.

    Article  CAS  PubMed  Google Scholar 

  • Torika N, Asraf K, Cohen H, Fleisher-Berkovich S. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer’s disease mice. Brain Behav Immun. 2017;64:80–90.

    Article  CAS  PubMed  Google Scholar 

  • Trigiani LJ, Royea J, Lacalle-Aurioles M, Tong XK, Hamel E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension. 2018;72(5):1217–26.

    Article  CAS  PubMed  Google Scholar 

  • Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, et al. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension. 2009;54(4):782–7.

    Article  CAS  PubMed  Google Scholar 

  • Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci. 2007;27(25):6771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015;28(3):289–99.

    Article  CAS  PubMed  Google Scholar 

  • Vinh A, Widdop RE, Drummond GR, Gaspari TA. Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res. 2008;77(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007;117(11):3393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QG, Xue X, Yang Y, Gong PY, Jiang T, Zhang YD. Angiotensin IV suppresses inflammation in the brains of rats with chronic cerebral hypoperfusion. J Renin-Angiotensin-Aldosterone Syst. 2018;19(3):1470320318799587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW. Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides. 2001;22(9):1403–14.

    Article  CAS  PubMed  Google Scholar 

  • Widdop RE, Jones ES, Hannan RE, Gaspari TA. Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol. 2003;140(5):809–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WL, Munn C, Ross RC, Harding JW, Wright JW. The role of the AT4 and cholinergic systems in the nucleus Basalis Magnocellularis (NBM): effects on spatial memory. Brain Res. 2009;1272:25–31.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski T, Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85(6):1162–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright JW, Harding JW. Brain renin-angiotensin--a new look at an old system. Prog Neurobiol. 2011;95(1):49–67.

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol. 2015;125:26–46.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Zhu D, Ji L, Tian M, Xu C, Shi J. Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res. 2014;1573:44–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work from our laboratory referred in this review was funded by grants from the Canadian Institute of Health Research (MOP 126001), the Heart and Stroke Foundation of Québec, and the Alzheimer Society of Canada. JR received studentships from the Canadian Vascular Network-Hypertension and les Fonds de Recherche du Québec - Santé (FRQS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Hamel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royea, J., Hamel, E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer’s disease therapeutic targets. GeroScience 42, 1237–1256 (2020). https://doi.org/10.1007/s11357-020-00231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00231-y

Keywords

Navigation