Integrated metabolomics reveals altered lipid metabolism in adipose tissue in a model of extreme longevity

Abstract

Adipose tissue plays an essential role in metabolic health. Ames dwarf mice are exceptionally long-lived and display metabolically beneficial phenotypes in their adipose tissue, providing an ideal model for studying the intersection between adipose tissue and longevity. To this end, we assessed the metabolome and lipidome of adipose tissue in Ames dwarf mice. We observed distinct lipid profiles in brown versus white adipose tissue of Ames dwarf mice that are consistent with increased thermogenesis and insulin sensitivity, such as increased cardiolipin and decreased ceramide concentrations. Moreover, we identified 5-hydroxyeicosapentaenoic acid (5-HEPE), an ω-3 fatty acid metabolite, to be increased in Ames dwarf brown adipose tissue (BAT), as well as in circulation. Importantly, 5-HEPE is increased in other models of BAT activation and is negatively correlated with body weight, insulin resistance, and circulating triglyceride concentrations in humans. Together, these data represent a novel lipid signature of adipose tissue in a mouse model of extreme longevity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aguiar-Oliveira MH, Bartke A. Growth hormone deficiency: health and longevity. Endocr Rev. 2019;40:575–601. https://doi.org/10.1210/er.2018-00216.

    Article  PubMed  Google Scholar 

  2. Andersson A, Sjodin A, Olsson R, Vessby B. Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am J Physiol. 1998;274:E432–8. https://doi.org/10.1152/ajpendo.1998.274.3.E432.

    CAS  Article  PubMed  Google Scholar 

  3. Aon MA, et al. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 2020. https://doi.org/10.1016/j.cmet.2020.04.018.

  4. Ayyadevara S, et al. Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid Redox Signal. 2013;18:481–90. https://doi.org/10.1089/ars.2011.4151.

    CAS  Article  PubMed  Google Scholar 

  5. Blackburn GL, Walker WA. Science-based solutions to obesity: what are the roles of academia, government, industry, and health care? Am J Clin Nutr. 2005;82:207S–10S. https://doi.org/10.1093/ajcn/82.1.207S.

    CAS  Article  PubMed  Google Scholar 

  6. Brown-Borg HM, Rakoczy SG. Growth hormone administration to long-living dwarf mice alters multiple components of the antioxidative defense system. Mech Ageing Dev. 2003;124:1013–24. https://doi.org/10.1016/j.mad.2003.07.001.

    CAS  Article  PubMed  Google Scholar 

  7. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384:33. https://doi.org/10.1038/384033a0.

    CAS  Article  PubMed  Google Scholar 

  8. Chaurasia B, Kaddai VA, Lancaster GI, Henstridge DC, Sriram S, Galam DLA, et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 2016;24:820–34. https://doi.org/10.1016/j.cmet.2016.10.002.

    CAS  Article  PubMed  Google Scholar 

  9. Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15:585–94. https://doi.org/10.1016/j.cmet.2012.04.002.

    CAS  Article  PubMed  Google Scholar 

  10. Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, et al. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem. 2019;295:1926–42. https://doi.org/10.1074/jbc.REV119.007363.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheng S, Wiklund P, Autio R, Borra R, Ojanen X, Xu L, et al. Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS One. 2015;10:e0138889. https://doi.org/10.1371/journal.pone.0138889.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cutler RG, Thompson KW, Camandola S, Mack KT, Mattson MP. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans. Mech Ageing Dev. 2014;143-144:9–18. https://doi.org/10.1016/j.mad.2014.11.002.

    CAS  Article  PubMed  Google Scholar 

  13. Cypess AM, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17. https://doi.org/10.1056/NEJMoa0810780.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Darcy J, Bartke A. Functionally enhanced brown adipose tissue in Ames dwarf mice. Adipocyte. 2017;6:62–7. https://doi.org/10.1080/21623945.2016.1274470.

    CAS  Article  PubMed  Google Scholar 

  15. Darcy J, Tseng YH. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience. 2019;41:285–96. https://doi.org/10.1007/s11357-019-00076-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Darcy J, McFadden S, Fang Y, Huber JA, Zhang C, Sun LY, et al. Brown adipose tissue function is enhanced in long-lived, male Ames dwarf mice. Endocrinology. 2016;157:4744–53. https://doi.org/10.1210/en.2016-1593.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte. 2017;6:69–75. https://doi.org/10.1080/21623945.2017.1308990.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Darcy J, McFadden S, Fang Y, Berryman DE, List EO, Milcik N, et al. Increased environmental temperature normalizes energy metabolism outputs between normal and Ames dwarf mice. Aging (Albany NY). 2018;10:2709–22. https://doi.org/10.18632/aging.101582.

    CAS  Article  Google Scholar 

  19. Delic V, Griffin JWD, Zivkovic S, Zhang Y, Phan TA, Gong H, et al. Individual amino acid supplementation can improve energy metabolism and decrease ROS production in neuronal cells overexpressing alpha-synuclein. Neuromolecular Med. 2017;19:322–44. https://doi.org/10.1007/s12017-017-8448-8.

    CAS  Article  PubMed  Google Scholar 

  20. Duan J, et al. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids. 2016;48:53–64. https://doi.org/10.1007/s00726-015-2065-3.

    CAS  Article  PubMed  Google Scholar 

  21. Goldman DP, Cutler D, Rowe JW, Michaud PC, Sullivan J, Peneva D, et al. Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff (Millwood). 2013;32:1698–705. https://doi.org/10.1377/hlthaff.2013.0052.

    Article  Google Scholar 

  22. Gonzalez-Covarrubias V, et al. Lipidomics of familial longevity. Aging Cell. 2013;12:426–34. https://doi.org/10.1111/acel.12064.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, et al. Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci Rep. 2013;3:3267. https://doi.org/10.1038/srep03267.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Green CL, et al. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell. 2017;16:529–40. https://doi.org/10.1111/acel.12570.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Green CL, et al. The effects of graded levels of calorie restriction: XIV. Global metabolomics screen reveals brown adipose tissue changes in amino acids, catecholamines, and antioxidants after short-term restriction in C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2020;75:218–29. https://doi.org/10.1093/gerona/glz023.

    CAS  Article  PubMed  Google Scholar 

  26. Helms SA, Azhar G, Zuo C, Theus SA, Bartke A, Wei JY. Smaller cardiac cell size and reduced extra-cellular collagen might be beneficial for hearts of Ames dwarf mice. Int J Biol Sci. 2010;6:475–90. https://doi.org/10.7150/ijbs.6.475.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell. 2016;15:509–21. https://doi.org/10.1111/acel.12467.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Hoene M, Li J, Haring HU, Weigert C, Xu G, Lehmann R. The lipid profile of brown adipose tissue is sex-specific in mice. Biochim Biophys Acta. 2014;1842:1563–70. https://doi.org/10.1016/j.bbalip.2014.08.003.

    CAS  Article  PubMed  Google Scholar 

  29. Hoffman JM, Poonawalla A, Icyuz M, Swindell WR, Wilson L, Barnes S, et al. Transcriptomic and metabolomic profiling of long-lived growth hormone releasing hormone knock-out mice: evidence for altered mitochondrial function and amino acid metabolism. Aging (Albany NY). 2020;12. https://doi.org/10.18632/aging.102822.

  30. Huang X, Withers BR, Dickson RC. Sphingolipids and lifespan regulation. Biochim Biophys Acta. 2014;1841:657–64. https://doi.org/10.1016/j.bbalip.2013.08.006.

    CAS  Article  PubMed  Google Scholar 

  31. Hulbert AJ, Faulks SC, Buffenstein R. Oxidation-resistant membrane phospholipids can explain longevity differences among the longest-living rodents and similarly-sized mice. J Gerontol A Biol Sci Med Sci. 2006a;61:1009–18. https://doi.org/10.1093/gerona/61.10.1009.

    CAS  Article  PubMed  Google Scholar 

  32. Hulbert AJ, Faulks SC, Harper JM, Miller RA, Buffenstein R. Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mech Ageing Dev. 2006b;127:653–7. https://doi.org/10.1016/j.mad.2006.03.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 2018;29:191–200. https://doi.org/10.1016/j.tem.2018.01.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Iwasa M, et al. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment. Obes Res Clin Pract. 2015;9:293–7. https://doi.org/10.1016/j.orcp.2015.01.003.

    Article  PubMed  Google Scholar 

  35. Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 2009;1793:212–8. https://doi.org/10.1016/j.bbamcr.2008.07.024.

    CAS  Article  PubMed  Google Scholar 

  36. Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22:546–59. https://doi.org/10.1016/j.cmet.2015.09.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020. https://doi.org/10.1038/s41574-020-0335-y.

  38. Kirkland JL. Translating the science of aging into therapeutic interventions. Cold Spring Harb Perspect Med. 2016;6:a025908. https://doi.org/10.1101/cshperspect.a025908.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kogure R, Toyama K, Hiyamuta S, Kojima I, Takeda S. 5-Hydroxy-eicosapentaenoic acid is an endogenous GPR119 agonist and enhances glucose-dependent insulin secretion. Biochem Biophys Res Commun. 2011;416:58–63. https://doi.org/10.1016/j.bbrc.2011.10.141.

    CAS  Article  PubMed  Google Scholar 

  40. Leiria LO, et al. 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab. 2019;30:768–783 e767. https://doi.org/10.1016/j.cmet.2019.07.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Lewis KN, Rubinstein ND, Buffenstein R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. Geroscience. 2018;40:105–21. https://doi.org/10.1007/s11357-018-0014-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Lu X, Solmonson A, Lodi A, Nowinski SM, Sentandreu E, Riley CL, et al. The early metabolomic response of adipose tissue during acute cold exposure in mice. Sci Rep. 2017;7:3455. https://doi.org/10.1038/s41598-017-03108-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci. 2018;1411:5–20. https://doi.org/10.1111/nyas.13398.

    Article  PubMed  Google Scholar 

  44. Lynes MD, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med. 2017;23:631–7. https://doi.org/10.1038/nm.4297.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Lynes MD, Shamsi F, Sustarsic EG, Leiria LO, Wang CH, Su SC, et al. Cold-activated lipid dynamics in adipose tissue highlights a role for cardiolipin in thermogenic metabolism. Cell Rep. 2018;24:781–90. https://doi.org/10.1016/j.celrep.2018.06.073.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Lynes MD, Kodani SD, Tseng YH. Lipokines and thermogenesis. Endocrinology. 2019;160:2314–25. https://doi.org/10.1210/en.2019-00337.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne). 2019;10:137. https://doi.org/10.3389/fendo.2019.00137.

    Article  Google Scholar 

  48. Masternak MM, Bartke A. Growth hormone, inflammation and aging. Pathobiol Aging Age Relat Dis. 2012;2. https://doi.org/10.3402/pba.v2i0.17293.

  49. May FJ, Baer LA, Lehnig AC, So K, Chen EY, Gao F, et al. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 2017;18:1558–72. https://doi.org/10.1016/j.celrep.2017.01.038.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Nagahora N, Yamada H, Kikuchi S, Hakozaki M, Yano A. Nrf2 activation by 5-lipoxygenase metabolites in human umbilical vascular endothelial cells nutrients. 2017;9. https://doi.org/10.3390/nu9091001.

  51. Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 2010;11:268–72. https://doi.org/10.1016/j.cmet.2010.03.007.

    CAS  Article  PubMed  Google Scholar 

  52. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52. https://doi.org/10.1152/ajpendo.00691.2006.

    CAS  Article  PubMed  Google Scholar 

  53. Newgard CB, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26. https://doi.org/10.1016/j.cmet.2009.02.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Ni H, Lu L, Deng J, Fan W, Li T, Yao J. Effects of glutamate and aspartate on serum antioxidative enzyme, sex hormones, and genital inflammation in boars challenged with hydrogen peroxide mediators. Inflamm. 2016;10:4394695. https://doi.org/10.1155/2016/4394695.

    CAS  Article  Google Scholar 

  55. Oguri Y, Kajimura S. Cellular heterogeneity in brown adipose tissue. J Clin Invest. 2020;130:65–7. https://doi.org/10.1172/JCI133786.

    Article  PubMed  Google Scholar 

  56. Oh SI, Lee MS, Kim CI, Song KY, Park SC. Aspartate modulates the ethanol-induced oxidative stress and glutathione utilizing enzymes in rat testes. Exp Mol Med. 2002;34:47–52. https://doi.org/10.1038/emm.2002.7.

    CAS  Article  PubMed  Google Scholar 

  57. Onodera T, Fukuhara A, Shin J, Hayakawa T, Otsuki M, Shimomura I. Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci Rep. 2017;7:4560. https://doi.org/10.1038/s41598-017-04474-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med. 2010;48:1286–95. https://doi.org/10.1016/j.freeradbiomed.2010.02.020.

    CAS  Article  PubMed  Google Scholar 

  59. Pietrocola F, Castoldi F, Markaki M, Lachkar S, Chen G, Enot DP, et al. Aspirin recapitulates features of caloric restriction. Cell Rep. 2018;22:2395–407. https://doi.org/10.1016/j.celrep.2018.02.024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Ramstedt U, Serhan CN, Lundberg U, Wigzell H, Samuelsson B. Inhibition of human natural killer cell activity by (14R,15S)-14,15-dihydroxy-5Z,8Z,10E,12E- icosatetraenoic acid. Proc Natl Acad Sci U S A. 1984;81:6914–8. https://doi.org/10.1073/pnas.81.22.6914.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Rattray NJW, Trivedi DK, Xu Y, Chandola T, Johnson CH, Marshall AD, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10:5027. https://doi.org/10.1038/s41467-019-12716-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Reckelhoff JF, Kellum JA Jr, Racusen LC, Hildebrandt DA. Long-term dietary supplementation with L-arginine prevents age-related reduction in renal function. Am J Physiol. 1997;272:R1768–74. https://doi.org/10.1152/ajpregu.1997.272.6.R1768.

    CAS  Article  PubMed  Google Scholar 

  63. Rojanathammanee L, Rakoczy S, Brown-Borg HM. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice. J Gerontol A Biol Sci Med Sci. 2014;69:1199–211. https://doi.org/10.1093/gerona/glt178.

    CAS  Article  PubMed  Google Scholar 

  64. Romanick MA, Rakoczy SG, Brown-Borg HM. Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech Ageing Dev. 2004;125:269–81. https://doi.org/10.1016/j.mad.2004.02.001.

    CAS  Article  PubMed  Google Scholar 

  65. Saito M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31. https://doi.org/10.2337/db09-0530.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Schrauwen P, van Marken Lichtenbelt WD, Spiegelman BM. The future of brown adipose tissues in the treatment of type 2 diabetes. Diabetologia. 2015;58:1704–7. https://doi.org/10.1007/s00125-015-3611-y.

    CAS  Article  PubMed  Google Scholar 

  67. Schulz TJ, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495:379–83. https://doi.org/10.1038/nature11943.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest. 2018;128:2657–69. https://doi.org/10.1172/JCI97943.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sharma S, Rakoczy S, Dahlheimer K, Brown-Borg H. The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress. Exp Gerontol. 2010;45:936–49. https://doi.org/10.1016/j.exger.2010.08.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Simcox J, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab. 2017;26:509–522 e506. https://doi.org/10.1016/j.cmet.2017.08.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014;19:21–36. https://doi.org/10.1016/j.cmet.2013.10.006.

    CAS  Article  PubMed  Google Scholar 

  72. Stanford KI, et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes. 2015;64:2002–14. https://doi.org/10.2337/db14-0704.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Stout MB, et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY). 2014;6:575–86. https://doi.org/10.18632/aging.100681.

    Article  Google Scholar 

  74. Strong R, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7:641–50. https://doi.org/10.1111/j.1474-9726.2008.00414.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Strong R, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15:872–84. https://doi.org/10.1111/acel.12496.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Sustarsic EG, et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 2018;28:159–174 e111. https://doi.org/10.1016/j.cmet.2018.05.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Sverdlov AL, Ngo DT, Chan WP, Chirkov YY, Horowitz JD. Aging of the nitric oxide system: are we as old as our NO? J Am Heart Assoc. 2014;3. https://doi.org/10.1161/JAHA.114.000973.

  78. Tolstikov V, Nikolayev A, Dong S, Zhao G, Kuo MS. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells. PLoS One. 2014;9:e114019. https://doi.org/10.1371/journal.pone.0114019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Ussher JR, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. 2010;59:2453–64. https://doi.org/10.2337/db09-1293.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Valencak TG, Ruf T. Phospholipid composition and longevity: lessons from Ames dwarf mice. Age (Dordr). 2013;35:2303–13. https://doi.org/10.1007/s11357-013-9533-z.

    CAS  Article  Google Scholar 

  81. van Marken Lichtenbelt WD, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8. https://doi.org/10.1056/NEJMoa0808718.

    Article  PubMed  Google Scholar 

  82. Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13:26–35. https://doi.org/10.1038/nrendo.2016.136.

    CAS  Article  PubMed  Google Scholar 

  83. Viltard M, et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY). 2019;11:4783–800. https://doi.org/10.18632/aging.102116.

    CAS  Article  Google Scholar 

  84. Virtanen KA, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25. https://doi.org/10.1056/NEJMoa0808949.

    CAS  Article  PubMed  Google Scholar 

  85. Wan QL, Zheng SQ, Wu GS, Luo HR. Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol. 2013;48:499–506. https://doi.org/10.1016/j.exger.2013.02.020.

    CAS  Article  PubMed  Google Scholar 

  86. Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci. 2006;61:323–31. https://doi.org/10.1093/gerona/61.4.323.

    Article  PubMed  Google Scholar 

  87. Wang C, et al. Hydroxyeicosapentaenoic acids and epoxyeicosatetraenoic acids attenuate early occurrence of nonalcoholic fatty liver disease. Br J Pharmacol. 2017;174:2358–72. https://doi.org/10.1111/bph.13844.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Westbrook R, Bonkowski MS, Strader AD, Bartke A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci. 2009;64:443–51. https://doi.org/10.1093/gerona/gln075.

    CAS  Article  PubMed  Google Scholar 

  89. Westbrook R, Bonkowski MS, Arum O, Strader AD, Bartke A. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice. J Gerontol A Biol Sci Med Sci. 2014;69:25–33. https://doi.org/10.1093/gerona/glt080.

    CAS  Article  PubMed  Google Scholar 

  90. Wiesenborn DS, Ayala JE, King E, Masternak MM. Insulin sensitivity in long-living Ames dwarf mice. Age (Dordr). 2014;36:9709. https://doi.org/10.1007/s11357-014-9709-1.

    CAS  Article  Google Scholar 

  91. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19:654–72. https://doi.org/10.1038/s41580-018-0044-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Yoneshiro T, et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 2019;572:614–9. https://doi.org/10.1038/s41586-019-1503-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Yore MM, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–32. https://doi.org/10.1016/j.cell.2014.09.035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014;17:324–8. https://doi.org/10.1097/MCO.0000000000000065.

    CAS  Article  PubMed  Google Scholar 

  95. Zingaretti MC, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20. https://doi.org/10.1096/fj.09-133546.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by U.S. NIH grants R01DK077097 and R01DK102898, and by US Army Medical Research grant W81XWH-17-1-0428 (to Y.-H.T.), and by grant P30DK036836 (to Joslin Diabetes Center’s Diabetes Research Center; DRC) from the National Institute of Diabetes and Digestive and Kidney Diseases. J.D. was supported by NIH grant T32DK007260 and American Heart Association grant 20POST35210497. M.D.L. was supported by NIH grant K01DK111714.

Author information

Affiliations

Authors

Contributions

J.D. designed and directed research, performed experiments, analyzed data, and wrote the paper. Y.F., S.M., and A.B. designed research and performed experiments with Ames dwarf mice. M.D.L. and L.O.L. performed experiments with the Myf5CreBMPr1afl/fl mice. J.M.D. aided in the creation of the online viewer. N.R.N. oversaw lipidomic and metabolomic experiments. V.B. and M.A.K. performed lipidomic analysis and experimentation. V.T. and B.G. performed metabolomic analysis and experimentation. Y.-H.T. directed the research and co-wrote the paper.

Corresponding author

Correspondence to Yu-Hua Tseng.

Ethics declarations

All animal procedures were approved by the Institutional Animal Care and Use Committees at the Joslin Diabetes Center (JDC) and Southern Illinois University School of Medicine (SIUSOM). The collection of the human samples, phenotyping, and serum analyses were approved by the ethics committee of the University of Leipzig (approval numbers: 159-12-21052012 and 017-12-23012012). All individuals provided written informed consent prior to entering the study.

Conflict of interest

The authors declare the following competing interests: M.A.K., N.R.N., V.T., B.G., and V.B. are employees of BERG.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Fig 1
figure7

Metabolite distribution in Ames dwarf adipose tissue A. Heatmap of the top 50 altered metabolites (by Student’s t test) in BAT between Ames dwarf mice and control littermates. Each column represents one animal, and each row represents one metabolite (n = 6 per group). B. Heatmap of the top 50 altered metabolites in iWAT between Ames dwarf mice and control littermates (n = 6 control and 9 dwarf). C. Volcano plot of metabolites from BAT in dwarfs vs controls displayed as the log base-2 ratio of dwarf to control versus the inverse log base-10 of the P value of this comparison (Student’s t test). A P value of 0.05 is indicated by a dotted line. (n = 6 per group). D. Volcano plot of metabolites from iWAT (n = 6 control and 9 dwarfs per group). (PNG 6168 kb)

Supplemental Fig 2
figure8

Lipid distribution in Ames dwarf adipose tissue A. The breakdown of each lipid class quantified in BAT of Ames dwarf mice. The lipid classes are acylcarnitine (AC), ceramide (Cer), cholesterol ester (CE), coenzyme Q (CoQ), monoacylglycerol (MAG), diacylglycerol (DAG), triacylglycerol (TAG), free fatty acid (FFA), glycolipid, phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), cardiolipin (CL), and branched fatty acid esters of hydroxy fatty acids (FAHFA). B. The breakdown of each lipid class quantified in iWAT of Ames dwarf mice. C. Volcano plot of structural lipids from BAT in dwarfs vs controls displayed as the log base-2 ratio of dwarf to control versus the inverse log base-10 of the P value of this comparison (Student’s t test). A P value of 0.05 is indicated by a dotted line. Cer, CL, FAHFA, and phospholipid family members are denoted (n = 5 controls and 6 dwarfs per group). D. Volcano plot of structural lipids from iWAT (n = 6 control and 9 dwarfs per group). (PNG 6168 kb)

Supplemental Fig 3
figure9

Ames dwarf mice have unaltered phospholipids in their BAT A. Concentrations of phospholipids in BAT of Ames dwarf mice. B. Concentrations of lyso-containing phospholipids in BAT of Ames dwarf mice. C. Concentrations of saturated phospholipids in BAT of Ames dwarf mice. D. Concentrations of monounsaturated phospholipids in BAT of Ames dwarf mice. E. Concentrations of polyunsaturated phospholipids in BAT of Ames dwarf mice. F. Concentrations of phospholipids containing 18:2 in BAT of Ames dwarf mice. G. Concentrations of phospholipids containing 20:4 in BAT of Ames dwarf mice. H. Concentrations of phospholipids containing 22:6 in BAT of Ames dwarf mice. Data throughout the figure are presented as mean ± SEM; n = 6 control and 5 dwarf. *P < 0.05, **P < 0.01, by Student’s t test. (PNG 6168 kb)

11357_2020_221_MOESM1_ESM.eps

High resolution image (EPS 1970 kb)

11357_2020_221_MOESM2_ESM.eps

High resolution image (EPS 362 kb)

11357_2020_221_MOESM3_ESM.eps

High resolution image (EPS 307 kb)

Supplemental Table 1

Metabolomic dataset of thermogenic adipose tissue in Ames dwarf mice A list of all quantified metabolites for BAT and iWAT of Ames dwarf mice. Values shown are normalized values. (XLSX 119 kb)

Supplemental Table 2

Structural lipids in BAT of Ames dwarf mice A list of structural lipids in BAT in Ames dwarf mice. (XLSX 260 kb)

Supplemental Table 3

Structural lipids in iWAT of Ames dwarf mice A list of structural lipids in BAT in Ames dwarf mice. (XLSX 294 kb)

Supplemental Table 4

Oxylipins in adipose tissue and serum of Ames dwarf mice A list of oxylipins in BAT, iWAT, and serum of Ames dwarf mice. (XLSX 81 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darcy, J., Fang, Y., McFadden, S. et al. Integrated metabolomics reveals altered lipid metabolism in adipose tissue in a model of extreme longevity. GeroScience 42, 1527–1546 (2020). https://doi.org/10.1007/s11357-020-00221-0

Download citation

Keywords

  • Brown adipose tissue
  • Beige adipose tissue
  • Ames dwarf
  • Thermogenesis
  • Aging
  • Lipidomics
  • Metabolomics