Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury

Abstract

Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain’s gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue’s energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aiba I, Shuttleworth CW (2012) Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J Physiol 590:5877–5893. https://doi.org/10.1113/jphysiol.2012.234476

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Aitken PG, Tombaugh GC, Turner DA, Somjen GG (1998) Similar propagation of SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and electrically. J Neurophysiol 80:1514–1521

    CAS  PubMed  Google Scholar 

  3. Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30:1195–1206. https://doi.org/10.1177/0333102409360828

    Article  PubMed  Google Scholar 

  4. Allen NJ, Rossi DJ, Attwell D (2004) Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 24:3837–3849. https://doi.org/10.1523/JNEUROSCI.5539-03.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Arboix A, Garcia-Eroles L, Massons J, Oliveres M, Targa C (2000) Acute stroke in very old people: clinical features and predictors of in-hospital mortality. J Am Geriatr Soc 48:36–41. https://doi.org/10.1111/j.1532-5415.2000.tb03026.x

    CAS  Article  PubMed  Google Scholar 

  6. Astrup J, Sorensen PM, Sorensen HR (1981) Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke 12:726–730

    CAS  PubMed  Google Scholar 

  7. Avoli M, Drapeau C, Louvel J, Pumain R, Olivier A, Villemure JG (1991) Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Ann Neurol 30:589–596. https://doi.org/10.1002/ana.410300412

    CAS  Article  PubMed  Google Scholar 

  8. Ayata C, Lauritzen M (2015) Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev 95:953–993. https://doi.org/10.1152/physrev.00027.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Balanca B, Meiller A, Bezin L, Dreier JP, Marinesco S, Lieutaud T (2017) Altered hypermetabolic response to cortical spreading depolarizations after traumatic brain injury in rats. J Cereb Blood Flow Metab 37:1670–1686. https://doi.org/10.1177/0271678X16657571

    Article  PubMed  Google Scholar 

  10. Balestrino M, Young J, Aitken P (1999) Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res 838:37–44

    CAS  PubMed  Google Scholar 

  11. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beaulieu C, Busch E, de Crespigny A, Moseley ME (2000) Spreading waves of transient and prolonged decreases in water diffusion after subarachnoid hemorrhage in rats. Magn Reson Med 44:110–116

    CAS  PubMed  Google Scholar 

  13. Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bere Z, Obrenovitch TP, Bari F, Farkas E (2014a) Ischemia-induced depolarizations and associated hemodynamic responses in incomplete global forebrain ischemia in rats. Neuroscience 260:217–226. https://doi.org/10.1016/j.neuroscience.2013.12.032

    CAS  Article  PubMed  Google Scholar 

  15. Bere Z, Obrenovitch TP, Kozak G, Bari F, Farkas E (2014b) Imaging reveals the focal area of spreading depolarizations and a variety of hemodynamic responses in a rat microembolic stroke model. J Cereb Blood Flow Metab 34:1695–1705. https://doi.org/10.1038/jcbfm.2014.136

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berger M, Speckmann EJ, Pape HC, Gorji A (2008) Spreading depression enhances human neocortical excitability in vitro. Cephalalgia 28:558–562. https://doi.org/10.1111/j.1468-2982.2008.01556.x

    CAS  Article  PubMed  Google Scholar 

  17. Bogdanov VB et al (2016) Susceptibility of primary sensory cortex to spreading depolarizations. J Neurosci 36:4733–4743. https://doi.org/10.1523/JNEUROSCI.3694-15.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bosche B et al (2010) Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 67:607–617. https://doi.org/10.1002/ana.21943

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM (2001) Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol 50:582–587

    CAS  PubMed  Google Scholar 

  20. Brazinova A et al (2018) Epidemiology of traumatic brain injury in Europe: a living systematic review. J Neurotrauma. https://doi.org/10.1089/neu.2015.4126

  21. Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci U S A 107:14472–14477. https://doi.org/10.1073/pnas.1004841107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bures J (1957) The ontogenetic development of steady potential differences in the cerebral cortex in animals. Electroencephalogr Clin Neurophysiol 9:121–130. https://doi.org/10.1016/0013-4694(57)90116-5

    CAS  Article  PubMed  Google Scholar 

  23. Burr HS, Harmann PJJ (1939) Voltage gradients in the nervous system. Trans Amer Neurol Ass 65:11–14

    Google Scholar 

  24. Busch E, Gyngell ML, Eis M, Hoehn-Berlage M, Hossmann KA (1996) Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 16:1090–1099. https://doi.org/10.1097/00004647-199611000-00002

    CAS  Article  PubMed  Google Scholar 

  25. Busch E, Beaulieu C, de Crespigny A, Moseley ME (1998) Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 29:2155–2161

    CAS  PubMed  Google Scholar 

  26. Cain SM et al (2017) In vivo imaging reveals that pregabalin inhibits cortical spreading depression and propagation to subcortical brain structures. Proc Natl Acad Sci U S A in press

  27. Carlson AP, Abbas M, Alunday RL, Qeadan F, Shuttleworth CW (2018a) Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg 1–7. https://doi.org/10.3171/2017.12.JNS171665

    Google Scholar 

  28. Carlson AP, Shuttleworth CW, Major S, Lemale CL, Dreier JP, Hartings JA (2018b) Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report J Neurosurg 1–7. https://doi.org/10.3171/2018.7.JNS181478

    Google Scholar 

  29. Chan AW, Murphy TH (2017) Good vibrations: resting-state functional connectivity reflects entrainment of vasomotion. Neuron 96:716–717. https://doi.org/10.1016/j.neuron.2017.10.035

    CAS  Article  PubMed  Google Scholar 

  30. Csipo T et al (2019) Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. Geroscience. https://doi.org/10.1007/s11357-019-00122-x

    PubMed  PubMed Central  Google Scholar 

  31. Dahlem MA, Hadjikhani N (2009) Migraine aura: retracting particle-like waves in weakly susceptible cortex. PLoS One 4:e5007. https://doi.org/10.1371/journal.pone.0005007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. de Crespigny A, Rother J, van Bruggen N, Beaulieu C, Moseley ME (1998) Magnetic resonance imaging assessment of cerebral hemodynamics during spreading depression in rats. J Cereb Blood Flow Metab 18:1008–1017. https://doi.org/10.1097/00004647-199809000-00010

    Article  PubMed  Google Scholar 

  33. Dennis MS, Burn JP, Sandercock PA, Bamford JM, Wade DT, Warlow CP (1993) Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project. Stroke 24:796–800. https://doi.org/10.1161/01.str.24.6.796

    CAS  Article  PubMed  Google Scholar 

  34. Dezsi L, Greenberg JH, Hamar J, Sladky J, Karp A, Reivich M (1992) Acute improvement in histological outcome by MK-801 following focal cerebral ischemia and reperfusion in the cat independent of blood flow changes. J Cereb Blood Flow Metab 12:390–399. https://doi.org/10.1038/jcbfm.1992.56

    CAS  Article  PubMed  Google Scholar 

  35. Di Carlo A et al (1999) Stroke in the very old : clinical presentation and determinants of 3-month functional outcome: a European perspective. European BIOMED Study of Stroke Care Group. Stroke 30:2313–2319. https://doi.org/10.1161/01.str.30.11.2313

    Article  PubMed  Google Scholar 

  36. Dichgans M et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739. https://doi.org/10.1002/ana.410440506

    CAS  Article  PubMed  Google Scholar 

  37. Dietz RM, Weiss JH, Shuttleworth CW (2008) Zn2+ influx is critical for some forms of spreading depression in brain slices. J Neurosci 28:8014–8024. https://doi.org/10.1523/JNEUROSCI.0765-08.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Dijkhuizen RM, Beekwilder JP, van der Worp HB, van der Sprenkel JW B, Tulleken KA, Nicolay K (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 840:194–205

    CAS  PubMed  Google Scholar 

  39. Dirnagl U, Tanabe J, Pulsinelli W (1990) Pre- and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res 527:62–68. https://doi.org/10.1016/0006-8993(90)91060-t

    CAS  Article  PubMed  Google Scholar 

  40. Dohmen C et al (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63:720–728. https://doi.org/10.1002/ana.21390

    Article  PubMed  Google Scholar 

  41. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447. https://doi.org/10.1038/nm.2333

    CAS  Article  PubMed  Google Scholar 

  42. Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86:902–922. https://doi.org/10.1016/j.neuron.2015.04.004

    CAS  Article  PubMed  Google Scholar 

  43. Dreier JP, Reiffurth C (2017) Exploitation of the spreading depolarization-induced cytotoxic edema for high-resolution, 3D mapping of its heterogeneous propagation paths. Proc Natl Acad Sci U S A 114:2112–2114. https://doi.org/10.1073/pnas.1700760114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Dreier JP et al (1998) Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab 18:978–990. https://doi.org/10.1097/00004647-199809000-00007

    CAS  Article  PubMed  Google Scholar 

  45. Dreier JP et al (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93:658–666. https://doi.org/10.3171/jns.2000.93.4.0658

    CAS  Article  PubMed  Google Scholar 

  46. Dreier JP et al (2001a) Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats. J Physiol 531:515–526

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dreier JP, Sakowitz OW, Unterberg AW, Benndorf G, Einhaupl KM, Valdueza JM (2001b) Migrainous aura starting several minutes after the onset of subarachnoid hemorrhage. Neurology 57:1344–1345

    CAS  PubMed  Google Scholar 

  48. Dreier JP et al (2002a) Endothelin-1 potently induces Leao’s cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura? Brain 125:102–112

    PubMed  Google Scholar 

  49. Dreier JP, Sakowitz OW, Harder A, Zimmer C, Dirnagl U, Valdueza JM, Unterberg AW (2002b) Focal laminar cortical MR signal abnormalities after subarachnoid hemorrhage. Ann Neurol 52:825–829. https://doi.org/10.1002/ana.10383

    Article  PubMed  Google Scholar 

  50. Dreier JP, Windmuller O, Petzold G, Lindauer U, Einhaupl KM, Dirnagl U (2002c) Ischemia caused by inverse coupling between neuronal activation and cerebral blood flow in rats. In: Tomita M, Kanno I, Hamel E (eds) Brain activation and CBF control. Elsevier, Amsterdam, pp 487–492

    Google Scholar 

  51. Dreier JP, Windmuller O, Petzold G, Lindauer U, Einhaupl KM, Dirnagl U (2002d) Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery 51:1457–1465 discussion 1465-1457

    PubMed  Google Scholar 

  52. Dreier JP et al (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237. https://doi.org/10.1093/brain/awl297

    Article  PubMed  Google Scholar 

  53. Dreier JP et al (2007) Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis. Exp Biol Med (Maywood) 232:204–213

    CAS  Google Scholar 

  54. Dreier JP et al (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132:1866–1881. https://doi.org/10.1093/brain/awp102

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dreier JP et al (2012) Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 135:259–275. https://doi.org/10.1093/brain/awr303

    Article  PubMed  Google Scholar 

  56. Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O (2013a) Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? Neuroscientist 19:25–42. https://doi.org/10.1177/1073858412453340

    Article  PubMed  Google Scholar 

  57. Dreier JP et al (2013b) Electrochemical failure of the brain cortex is more deleterious when it is accompanied by low perfusion. Stroke 44:490–496. https://doi.org/10.1161/STROKEAHA.112.660589

    CAS  Article  PubMed  Google Scholar 

  58. Dreier JP et al (2015) How spreading depolarization can be the pathophysiological correlate of both migraine aura and stroke. Acta Neurochir Suppl 120:137–140. https://doi.org/10.1007/978-3-319-04981-6_23

    Article  PubMed  Google Scholar 

  59. Dreier JP et al (2017) Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 37:1595–1625. https://doi.org/10.1177/0271678X16654496

    Article  PubMed  Google Scholar 

  60. Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K (2018a) Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 134:189–207. https://doi.org/10.1016/j.neuropharm.2017.09.027

    CAS  Article  PubMed  Google Scholar 

  61. Dreier JP et al (2018b) Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann Neurol 83:295–310. https://doi.org/10.1002/ana.25147

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dreier JP et al (2019) Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural electrocorticography. Front Neurosci 13:373. https://doi.org/10.3389/fnins.2019.00373

    Article  PubMed  PubMed Central  Google Scholar 

  63. Drenckhahn C et al (2012) Correlates of spreading depolarization in human scalp electroencephalography. Brain 135:853–868. https://doi.org/10.1093/brain/aws010

    Article  PubMed  PubMed Central  Google Scholar 

  64. Drenckhahn C et al (2016) Complications in aneurysmal subarachnoid hemorrhage patients with and without subdural electrode strip for electrocorticography. J Clin Neurophysiol 33:250–259. https://doi.org/10.1097/WNP.0000000000000274

    Article  PubMed  Google Scholar 

  65. Ellis MJ, Cordingley D, Girardin R, Ritchie L, Johnston J (2017) Migraine with aura or sports-related concussion: case report, pathophysiology, and multidisciplinary approach to management. Curr Sports Med Rep 16:14–18. https://doi.org/10.1249/JSR.0000000000000323

    Article  PubMed  Google Scholar 

  66. Enger R et al (2015) Dynamics of ionic shifts in cortical spreading depression. Cereb Cortex 25:4469–4476. https://doi.org/10.1093/cercor/bhv054

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eriksen N et al (2019) Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology 92:e326–e341. https://doi.org/10.1212/WNL.0000000000006814

    Article  PubMed  Google Scholar 

  68. Evans RW, Davidoff RA (2001) Subarachnoid hemorrhage or migraine? Headache 41:99–101

    CAS  PubMed  Google Scholar 

  69. Evans RW, Timm JS, Baskin DS (2015) A left frontal secretory meningioma can mimic transformed migraine with and without aura headache. 55:849–852. https://doi.org/10.1111/head.12580

    Google Scholar 

  70. Fabricius M, Jensen LH, Lauritzen M (1993) Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex. Brain Res 612:61–69

    CAS  PubMed  Google Scholar 

  71. Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M (2006) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129:778–790. https://doi.org/10.1093/brain/awh716

    Article  PubMed  Google Scholar 

  72. Fabricius M et al (2008) Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. Clin Neurophysiol 119:1973–1984. https://doi.org/10.1016/j.clinph.2008.05.025

    Article  PubMed  PubMed Central  Google Scholar 

  73. Farkas E, Bari F, Obrenovitch TP (2010) Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex. Neuroimage 51:734–742. https://doi.org/10.1016/j.neuroimage.2010.02.055

    Article  PubMed  Google Scholar 

  74. Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53. https://doi.org/10.1016/s1474-4422(03)00266-7

    Article  PubMed  Google Scholar 

  75. Fernandes de Lima VM, Goldermann M, Hanke WR (1994) Calcium waves in gray matter are due to voltage-sensitive glial membrane channels. Brain Res 663:77–83. https://doi.org/10.1016/0006-8993(94)90464-2

    CAS  Article  PubMed  Google Scholar 

  76. Feuerstein D et al (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355. https://doi.org/10.1038/jcbfm.2010.17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Feuerstein D et al (2014) Detecting tissue deterioration after brain injury: regional blood flow level versus capacity to raise blood flow. J Cereb Blood Flow Metab 34:1117–1127. https://doi.org/10.1038/jcbfm.2014.53

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fiehler J et al (2004) Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke 35:514–519. https://doi.org/10.1161/01.STR.0000114873.28023.C2

    Article  PubMed  Google Scholar 

  79. Fifkova E, Bures J, Koshtoyants OK, Krivanek J, Weiss T (1961) Leao’s spreading depression in the cerebellum of rat. Experientia 17:572–573

    CAS  PubMed  Google Scholar 

  80. Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E, Edvinsson L, Bolay H (2019) CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 39:354–365. https://doi.org/10.1177/0333102417735845

    Article  PubMed  Google Scholar 

  81. Fordsmann JC et al (2013) Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex. J Neurosci 33:2562–2570. https://doi.org/10.1523/JNEUROSCI.2308-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. https://doi.org/10.1038/nrn2201

    CAS  Article  PubMed  Google Scholar 

  83. Gill R, Andine P, Hillered L, Persson L, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371–379. https://doi.org/10.1038/jcbfm.1992.54

    CAS  Article  PubMed  Google Scholar 

  84. Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U S A 99:7699–7704. https://doi.org/10.1073/pnas.112012499

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Goldensohn ES, Schoenfeld RL, Hoefer PF (1951) The slowly changing voltage of the brain and the electrocorticogram Electroencephalogr. Clin Neurophysiol 3:231–236. https://doi.org/10.1016/0013-4694(51)90016-8

    CAS  Article  Google Scholar 

  86. Goldring S, O’Leary JL (1951) Experimentally derived correlates between ECG and steady cortical potential. J Neurophysiol 14:275–288. https://doi.org/10.1152/jn.1951.14.4.275

    CAS  Article  PubMed  Google Scholar 

  87. Goldring S, Ulett G, O’Leary J, Greditzer A (1950) Initial survey of slow potential changes obtained under resting conditions and incident to convulsive therapy. Electroencephalogr Clin Neurophysiol 2:297–308. https://doi.org/10.1016/0013-4694(50)90061-7

    CAS  Article  PubMed  Google Scholar 

  88. Gouras P (1958) Spreading depression of activity in amphibian retina. Am J Physiol 195:28–32. https://doi.org/10.1152/ajplegacy.1958.195.1.28

    CAS  Article  PubMed  Google Scholar 

  89. Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19:154–171

    CAS  PubMed  Google Scholar 

  90. Greenberg SM, Charidimou A (2018) Diagnosis of cerebral amyloid angiopathy: evolution of the Boston Criteria. Stroke 49:491–497. https://doi.org/10.1161/STROKEAHA.117.016990

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Brain Res Dev Brain Res 46:243–252

    CAS  PubMed  Google Scholar 

  92. Hadjikhani N et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98:4687–4692. https://doi.org/10.1073/pnas.071582498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Haglund MM, Schwartzkroin PA (1990) Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol 63:225–239

    CAS  PubMed  Google Scholar 

  94. Hansen AJ, Zeuthen T (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445

    CAS  PubMed  Google Scholar 

  95. Hartings JA et al (2011a) Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 10:1058–1064. https://doi.org/10.1016/S1474-4422(11)70243-5

    Article  PubMed  Google Scholar 

  96. Hartings JA et al (2011b) Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain 134:1529–1540. https://doi.org/10.1093/brain/awr048

    Article  PubMed  Google Scholar 

  97. Hartings JA et al (2017a) The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab 37:1571–1594. https://doi.org/10.1177/0271678X16654495

    Article  PubMed  Google Scholar 

  98. Hartings JA et al (2017b) Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 140:2673–2690. https://doi.org/10.1093/brain/awx214

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hartings JA, Ngwenya LB, Carroll CP, Foreman B (2018) Letter to the Editor. Ketamine sedation for the suppression of spreading depolarizations J Neurosurg 1–2. https://doi.org/10.3171/2018.6.JNS18235

    Google Scholar 

  100. Hashemi P, Bhatia R, Nakamura H, Dreier JP, Graf R, Strong AJ, Boutelle MG (2009) Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leao’s spreading depression. J Cereb Blood Flow Metab 29:166–175. https://doi.org/10.1038/jcbfm.2008.108

    CAS  Article  PubMed  Google Scholar 

  101. Heiss WD, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294–301. https://doi.org/10.1002/ana.410140307

    CAS  Article  PubMed  Google Scholar 

  102. Helbok R et al (2017) Spreading depolarizations in patients with spontaneous intracerebral hemorrhage: association with perihematomal edema progression. J Cereb Blood Flow Metab 37:1871–1882. https://doi.org/10.1177/0271678X16651269

    Article  PubMed  Google Scholar 

  103. Hernandez-Caceres J, Macias-Gonzalez R, Brozek G, Bures J (1987) Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res 437:360–364

    CAS  PubMed  Google Scholar 

  104. Herreras O, Somjen GG (1993) Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable spreading depression induced by microdialysis of elevated K+ in hippocampus of anesthetized rats. Brain Res 610:283–294

    CAS  PubMed  Google Scholar 

  105. Hertelendy P, Varga DP, Menyhart A, Bari F, Farkas E (2019) Susceptibility of the cerebral cortex to spreading depolarization in neurological disease states: the impact of aging. Neurochem Int 127:125–136. https://doi.org/10.1016/j.neuint.2018.10.010

    CAS  Article  PubMed  Google Scholar 

  106. Hertle DN et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135:2390–2398. https://doi.org/10.1093/brain/aws152

    Article  PubMed  Google Scholar 

  107. Higuchi T, Takeda Y, Hashimoto M, Nagano O, Hirakawa M (2002) Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J Cereb Blood Flow Metab 22:71–79. https://doi.org/10.1097/00004647-200201000-00009

    CAS  Article  PubMed  Google Scholar 

  108. Hinzman JM et al (2014) Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain 137:2960–2972. https://doi.org/10.1093/brain/awu241

    Article  PubMed  Google Scholar 

  109. Hinzman JM, DiNapoli VA, Mahoney EJ, Gerhardt GA, Hartings JA (2015) Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp Neurol 267:243–253. https://doi.org/10.1016/j.expneurol.2015.03.014

    Article  PubMed  Google Scholar 

  110. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93:9493–9498

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hop JW, Rinkel GJ, Algra A, van Gijn J (1997) Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 28:660–664

    CAS  PubMed  Google Scholar 

  112. Hukkelhoven CW et al (2003) Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J Neurosurg 99:666–673. https://doi.org/10.3171/jns.2003.99.4.0666

    Article  PubMed  Google Scholar 

  113. Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12:727–733. https://doi.org/10.1038/jcbfm.1992.103

    CAS  Article  PubMed  Google Scholar 

  114. Izenberg A, Aviv RI, Demaerschalk BM, Dodick DW, Hopyan J, Black SE, Gladstone DJ (2009) Crescendo transient aura attacks: a transient ischemic attack mimic caused by focal subarachnoid hemorrhage. Stroke 40:3725–3729. https://doi.org/10.1161/STROKEAHA.109.557009

    Article  PubMed  Google Scholar 

  115. Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2001) Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab 21:218–225. https://doi.org/10.1097/00004647-200103000-00005

    CAS  Article  PubMed  Google Scholar 

  116. Jarvis CR, Anderson TR, Andrew RD (2001) Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cereb Cortex 11:249–259

    CAS  PubMed  Google Scholar 

  117. Jeon JP et al (2016) Long-term treatment outcome of venous-predominant arteriovenous malformation. J Neurosurg 124:1100–1106. https://doi.org/10.3171/2015.4.JNS142475

    Article  PubMed  Google Scholar 

  118. Kammersgaard LP, Jorgensen HS, Reith J, Nakayama H, Pedersen PM, Olsen TS, Copenhagen Stroke S (2004) Short- and long-term prognosis for very old stroke patients. The Copenhagen Stroke Study. Age Ageing 33:149–154. https://doi.org/10.1093/ageing/afh052

    Article  PubMed  Google Scholar 

  119. Kang EJ, Major S, Jorks D, Reiffurth C, Offenhauser N, Friedman A, Dreier JP (2013) Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions. Neurobiol Dis 52:204–218. https://doi.org/10.1016/j.nbd.2012.12.007

    CAS  Article  PubMed  Google Scholar 

  120. Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci 5(Suppl):1039–1042. https://doi.org/10.1038/nn936

    CAS  Article  PubMed  Google Scholar 

  121. Kempinsky WH (1954) Steady potential gradients in experimental cerebral vascular occlusion. Electroencephalogr Clin Neurophysiol 6:375–388. https://doi.org/10.1016/0013-4694(54)90052-8

    CAS  Article  PubMed  Google Scholar 

  122. Klass A, Sanchez-Porras R, Santos E (2018) Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 38:1149–1179. https://doi.org/10.1177/0271678X18771440

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14

    CAS  PubMed  Google Scholar 

  124. Klatzo I (1987) Pathophysiological aspects of brain edema. Acta Neuropathol 72:236–239

    CAS  PubMed  Google Scholar 

  125. Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP (2004) ET-1 induces cortical spreading depression via activation of the ETA receptor/phospholipase C pathway in vivo. Am J Physiol Heart Circ Physiol 286:H1339–H1346. https://doi.org/10.1152/ajpheart.00227.2003

    CAS  Article  PubMed  Google Scholar 

  126. Kleinig TJ, Kiley M, Thompson PD (2008) Acute convexity subarachnoid haemorrhage: a cause of aura-like symptoms in the elderly. Cephalalgia 28:658–663. https://doi.org/10.1111/j.1468-2982.2008.01570.x

    CAS  Article  PubMed  Google Scholar 

  127. Kleiven S, Peloso PM, von Holst H (2003) The epidemiology of head injuries in Sweden from 1987 to 2000. Inj Control Saf Promot 10:173–180. https://doi.org/10.1076/icsp.10.3.173.14552

    Article  PubMed  Google Scholar 

  128. Klingebiel R, Friedman A, Shelef I, Dreier JP (2008) Clearance of a status aurae migraenalis in response to thrombendarterectomy in a patient with high grade internal carotid artery stenosis. J Neurol Neurosurg Psychiatry 79:89–90. https://doi.org/10.1136/jnnp.2007.119230

    CAS  Article  PubMed  Google Scholar 

  129. Koroleva VI, Korolev OS, Loseva E, Bures J (1998) The effect of MK-801 and of brain-derived polypeptides on the development of ischemic lesion induced by photothrombotic occlusion of the distal middle cerebral artery in rats. Brain Res 786:104–114. https://doi.org/10.1016/s0006-8993(97)01448-0

    CAS  Article  PubMed  Google Scholar 

  130. Koskinen S, Alaranta H (2008) Traumatic brain injury in Finland 1991-2005: a nationwide register study of hospitalized and fatal TBI. Brain Inj 22:205–214. https://doi.org/10.1080/02699050801938975

    Article  PubMed  Google Scholar 

  131. Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059

    CAS  PubMed  Google Scholar 

  132. Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49:831–850. https://doi.org/10.1152/jn.1983.49.3.831

    CAS  Article  PubMed  Google Scholar 

  133. Kunkler PE, Kraig RP (1998) Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci 18:3416–3425

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kunkler PE, Hulse RE, Kraig RP (2004) Multiplexed cytokine protein expression profiles from spreading depression in hippocampal organotypic cultures. J Cereb Blood Flow Metab 24:829–839. https://doi.org/10.1097/01.WCB.0000126566.34753.30

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Kurth T, Chabriat H, Bousser MG (2012) Migraine and stroke: a complex association with clinical implications. Lancet Neurol 11:92–100. https://doi.org/10.1016/S1474-4422(11)70266-6

    Article  PubMed  Google Scholar 

  136. LaManna JC, Rosenthal M (1975) Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Res 88:145–149

    CAS  PubMed  Google Scholar 

  137. Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339

    Google Scholar 

  138. Lassen NA, Friberg L (1991) Cerebral blood flow measured by xenon 133 using the intraarterial injection method or inhalation combined with SPECT in migraine research. In: Olesen J (ed) Migraine and other headaches. The vascular mechanisms. Raven Press, New York, pp 5–13

    Google Scholar 

  139. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1):199–210

    PubMed  Google Scholar 

  140. Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229. https://doi.org/10.1038/jcbfm.1992.32

    CAS  Article  PubMed  Google Scholar 

  141. Lauritzen M, Skyhoj Olsen T, Lassen NA, Paulson OB (1983) Changes in regional cerebral blood flow during the course of classic migraine attacks. Ann Neurol 13:633–641. https://doi.org/10.1002/ana.410130609

    CAS  Article  PubMed  Google Scholar 

  142. Lauritzen M, Rice ME, Okada Y, Nicholson C (1988) Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res 475:317–327

    CAS  PubMed  Google Scholar 

  143. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35. https://doi.org/10.1038/jcbfm.2010.191

    Article  PubMed  Google Scholar 

  144. Leão AAP (1947) Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol 10:409–414

    PubMed  Google Scholar 

  145. Leão AAP, Morison RS (1945) Propagation of spreading cortical depression. J Neurophysiol 8:33–45

    Google Scholar 

  146. Lehmenkuhler A (1990) [Spreading depression—cortical reactions: disorders of the extracellular microenvironment] EEG-EMG Z Elektroenzephalographie. Elektromyogr Verwandte Geb 21:1–6

  147. Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351

    CAS  PubMed  Google Scholar 

  148. Lublinsky S et al (2019) Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine 43:460–472

    PubMed  PubMed Central  Google Scholar 

  149. Luckl J et al (2018) The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 141:1734–1752. https://doi.org/10.1093/brain/awy102

    Article  PubMed  PubMed Central  Google Scholar 

  150. Maas AIR et al (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 16:987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X

    Article  Google Scholar 

  151. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389:655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

    Article  PubMed  Google Scholar 

  152. Madry C, Haglerod C, Attwell D (2010) The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells. Brain 133:3755–3763. https://doi.org/10.1093/brain/awq284

    Article  PubMed  PubMed Central  Google Scholar 

  153. Major S et al (2017) A role of the sodium pump in spreading ischemia in rats. J Cereb Blood Flow Metab 37:1687–1705. https://doi.org/10.1177/0271678X16639059

    CAS  Article  PubMed  Google Scholar 

  154. Makarova J, Makarov VA, Herreras O (2010) Generation of sustained field potentials by gradients of polarization within single neurons: a macroscopic model of spreading depression. J Neurophysiol 103:2446–2457. https://doi.org/10.1152/jn.01045.2009

    Article  PubMed  Google Scholar 

  155. Mane M, Muller M (2012) Temporo-spectral imaging of intrinsic optical signals during hypoxia-induced spreading depression-like depolarization. PLoS One 7:e43981. https://doi.org/10.1371/journal.pone.0043981

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Marrannes R, Willems R, De Prins E, Wauquier A (1988) Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457:226–240

    CAS  PubMed  Google Scholar 

  157. Marshall WH (1959) Spreading cortical depression of Leao. Physiol Rev 39:239–279

    CAS  PubMed  Google Scholar 

  158. Martins-Ferreira H, de Castro GO (1966) Light-scattering changes accompanying spreading depression in isolated retina. J Neurophysiol 29:715–726

    CAS  PubMed  Google Scholar 

  159. Martins-Ferreira H, De Oliveira CG, Struchiner CJ, Rodrigues PS (1974) Circling spreading depression in isolated chick retina. J Neurophysiol 37:773–784

    CAS  PubMed  Google Scholar 

  160. Maslarova A, Alam M, Reiffurth C, Lapilover E, Gorji A, Dreier JP (2011) Chronically epileptic human and rat neocortex display a similar resistance against spreading depolarization in vitro. Stroke 42:2917–2922. https://doi.org/10.1161/STROKEAHA.111.621581

    Article  PubMed  Google Scholar 

  161. Mateo C, Knutsen PM, Tsai PS, Shih AY, Kleinfeld D (2017) Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96:936-948 e933. https://doi.org/10.1016/j.neuron.2017.10.012

    CAS  Article  Google Scholar 

  162. Matsushima K, Hogan MJ, Hakim AM (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16:221–226. https://doi.org/10.1097/00004647-199603000-00006

    CAS  Article  PubMed  Google Scholar 

  163. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740:268–274

    CAS  PubMed  Google Scholar 

  164. Mazel T, Richter F, Vargova L, Sykova E (2002) Changes in extracellular space volume and geometry induced by cortical spreading depression in immature and adult rats. Physiol Res 51(Suppl 1):S85–S93

    PubMed  Google Scholar 

  165. Menyhart A, Makra P, Szepes BE, Toth OM, Hertelendy P, Bari F, Farkas E (2015) High incidence of adverse cerebral blood flow responses to spreading depolarization in the aged ischemic rat brain. Neurobiol Aging 36:3269–3277. https://doi.org/10.1016/j.neurobiolaging.2015.08.014

    Article  PubMed  Google Scholar 

  166. Menyhart A et al (2017) Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci Rep 7:1154. https://doi.org/10.1038/s41598-017-01284-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Menyhart A et al (2018) Large-conductance Ca(2+)-activated potassium channels are potently involved in the inverse neurovascular response to spreading depolarization. Neurobiol Dis 119:41–52. https://doi.org/10.1016/j.nbd.2018.07.026

    CAS  Article  PubMed  Google Scholar 

  168. Mies G, Paschen W (1984) Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 84:249–258

    CAS  PubMed  Google Scholar 

  169. Milakara D et al (2017) Simulation of spreading depolarization trajectories in cerebral cortex: correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NeuroImage Clinical 16:524–538. https://doi.org/10.1016/j.nicl.2017.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  170. Muir KW, Lees KR (2003) Excitatory amino acid antagonists for acute stroke Cochrane Database Syst Rev CD001244. https://doi.org/10.1002/14651858.CD001244

  171. Muller M, Somjen GG (1998) Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices. Brain Res 812:1–13

    CAS  PubMed  Google Scholar 

  172. Murphy TH, Li P, Betts K, Liu R (2008) Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 28:1756–1772. https://doi.org/10.1523/JNEUROSCI.5128-07.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. Murray CJ et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  PubMed  Google Scholar 

  174. Mushkudiani NA et al (2007) Prognostic value of demographic characteristics in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24:259–269. https://doi.org/10.1089/neu.2006.0028

    Article  PubMed  Google Scholar 

  175. Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395–398

    CAS  PubMed  Google Scholar 

  176. Nicholson C, Bruggencate GT, Steinberg R, Stockle H (1977) Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci U S A 74:1287–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Nozari A et al (2010) Microemboli may link spreading depression, migraine aura, and patent foramen ovale. Ann Neurol 67:221–229. https://doi.org/10.1002/ana.21871

    Article  PubMed  PubMed Central  Google Scholar 

  178. Oitzl MS, Huston JP (1984) Electroencephalographic spreading depression and concomitant behavioral changes induced by intrahippocampal injections of ACTH1-24 and D-Ala2-Met-enkephalinamide in the rat. Brain Res 308:33–42. https://doi.org/10.1016/0006-8993(84)90914-4

    CAS  Article  PubMed  Google Scholar 

  179. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9:344–352. https://doi.org/10.1002/ana.410090406

    CAS  Article  PubMed  Google Scholar 

  180. Olesen J, Friberg L, Olsen TS, Andersen AR, Lassen NA, Hansen PE, Karle A (1993) Ischaemia-induced (symptomatic) migraine attacks may be more frequent than migraine-induced ischaemic insults. Brain 116(Pt 1):187–202

    PubMed  Google Scholar 

  181. Oliveira-Ferreira AI et al (2010) Experimental and preliminary clinical evidence of an ischemic zone with prolonged negative DC shifts surrounded by a normally perfused tissue belt with persistent electrocorticographic depression. J Cereb Blood Flow Metab 30:1504–1519. https://doi.org/10.1038/jcbfm.2010.40

    Article  PubMed  PubMed Central  Google Scholar 

  182. Oliveira-Ferreira AI, Major S, Przesdzing I, Kang EJ, Dreier JP (2019) Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia J Cereb Blood Flow Metab in press

  183. Ovbiagele B et al (2013) Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association. Stroke 44:2361–2375. https://doi.org/10.1161/STR.0b013e31829734f2

    Article  PubMed  Google Scholar 

  184. Ozyurt E, Graham DI, Woodruff GN, McCulloch J (1988) Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8:138–143. https://doi.org/10.1038/jcbfm.1988.18

    CAS  Article  PubMed  Google Scholar 

  185. Pana R, Hornby L, Shemie SD, Dhanani S, Teitelbaum J (2016) Time to loss of brain function and activity during circulatory arrest. J Crit Care 34:77–83. https://doi.org/10.1016/j.jcrc.2016.04.001

    CAS  Article  PubMed  Google Scholar 

  186. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988a) Focal cerebral ischaemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J Cereb Blood Flow Metab 8:757–762. https://doi.org/10.1038/jcbfm.1988.124

    CAS  Article  PubMed  Google Scholar 

  187. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988b) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24:543–551. https://doi.org/10.1002/ana.410240411

    CAS  Article  PubMed  Google Scholar 

  188. Perez-Pinzon MA, Tao L, Nicholson C (1995) Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. J Neurophysiol 74:565–573

    CAS  PubMed  Google Scholar 

  189. Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54:591–598. https://doi.org/10.1002/ana.10723

    CAS  Article  PubMed  Google Scholar 

  190. Petzold GC et al (2005) Increased extracellular K+ concentration reduces the efficacy of N-methyl-D-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 36:1270–1277. https://doi.org/10.1161/01.STR.0000166023.51307.e0

    CAS  Article  PubMed  Google Scholar 

  191. Petzold GC et al (2008) Nitric oxide modulates spreading depolarization threshold in the human and rodent cortex. Stroke 39:1292–1299. https://doi.org/10.1161/STROKEAHA.107.500710

    CAS  Article  PubMed  Google Scholar 

  192. Piilgaard H, Lauritzen M (2009) Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J Cereb Blood Flow Metab 29:1517–1527. https://doi.org/10.1038/jcbfm.2009.73

    CAS  Article  PubMed  Google Scholar 

  193. Pinczolits A et al (2017) Standard-sampling microdialysis and spreading depolarizations in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab 37:1896–1905. https://doi.org/10.1177/0271678X17699629

    Article  PubMed  PubMed Central  Google Scholar 

  194. Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M (1997) Comparison of stroke features and disability in daily life in patients with ischemic stroke aged 55 to 70 and 71 to 85 years. Stroke 28:729–735. https://doi.org/10.1161/01.str.28.4.729

    CAS  Article  PubMed  Google Scholar 

  195. Pomper JK, Haack S, Petzold GC, Buchheim K, Gabriel S, Hoffmann U, Heinemann U (2006) Repetitive spreading depression-like events result in cell damage in juvenile hippocampal slice cultures maintained in normoxia. J Neurophysiol 95:355–368. https://doi.org/10.1152/jn.00186.2005

    Article  PubMed  Google Scholar 

  196. Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37. https://doi.org/10.1016/S0079-6123(08)61973-1

    CAS  Article  PubMed  Google Scholar 

  197. Rashidy-Pour A, Motaghed-Larijani Z, Bures J (1995) Tolerance to ketamine-induced blockade of cortical spreading depression transfers to MK-801 but not to AP5 in rats. Brain Res 693:64–69

    CAS  PubMed  Google Scholar 

  198. Reardon PM et al (2018) Characteristics, outcomes, and cost patterns of high-cost patients in the intensive care unit crit. Care Res Pract 2018:5452683. https://doi.org/10.1155/2018/5452683

    Article  Google Scholar 

  199. Reiffurth C, Kirov SA, Dreier JP (2012) Spreading depolarization. In: Chen J, Xu XM, Xu ZC, Zhang JH (eds) Animal models of acute neurological injuries II, Injury and mechanistic assessments. Humana Press, New York, pp 339–352

    Google Scholar 

  200. Reiffurth C, Alam M, Zahedi-Khorasani M, Major S, Dreier JP (2019) Na+/K+-ATPase α isoform deficiency results in distinct spreading depolarization phenotypes J Cereb Blood Flow Metab in press

  201. Reinhart KM, Shuttleworth CW (2018) Ketamine reduces deleterious consequences of spreading depolarizations. Exp Neurol 305:121–128. https://doi.org/10.1016/j.expneurol.2018.04.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  202. Revah O, Lasser-Katz E, Fleidervish IA, Gutnick MJ (2016) The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol Dis 95:158–167. https://doi.org/10.1016/j.nbd.2016.07.019

    CAS  Article  PubMed  Google Scholar 

  203. Revankar GS et al (2017) Spreading depolarizations and seizures in clinical subdural electrocorticographic recordings. In: Varelas PN, Claassen J (eds) Seizures in Critical Care. A Guide to Diagnosis and Therapeutics. Springer, New York, pp 77–90

    Google Scholar 

  204. Richter F, Eitner A, Leuchtweis J, Bauer R, Lehmenkuhler A, Schaible HG (2017) Effects of interleukin-1ss on cortical spreading depolarization and cerebral vasculature. J Cereb Blood Flow Metab 37:1791–1802. https://doi.org/10.1177/0271678X16641127

    CAS  Article  PubMed  Google Scholar 

  205. Risher WC, Ard D, Yuan J, Kirov SA (2010) Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. J Neurosci 30:9859–9868. https://doi.org/10.1523/JNEUROSCI.1917-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  206. Robertson RM, Spong KE, Srithiphaphirom P (2017) Chill coma in the locust, Locusta migratoria, is initiated by spreading depolarization in the central nervous system. Sci Rep 7:10297. https://doi.org/10.1038/s41598-017-10586-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  207. Rojas JI, Zurru MC, Romano M, Patrucco L, Cristiano E (2007) Acute ischemic stroke and transient ischemic attack in the very old risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years. Eur J Neurol 14:895–899. https://doi.org/10.1111/j.1468-1331.2007.01841.x

    CAS  Article  PubMed  Google Scholar 

  208. Rother J, de Crespigny AJ, D’Arceuil H, Mosley ME (1996) MR detection of cortical spreading depression immediately after focal ischemia in the rat. J Cereb Blood Flow Metab 16:214–220. https://doi.org/10.1097/00004647-199603000-00005

    CAS  Article  PubMed  Google Scholar 

  209. Roussel S, Pinard E, Seylaz J (1992) Effect of MK-801 on focal brain infarction in normotensive and hypertensive rats. Hypertension 19:40–46. https://doi.org/10.1161/01.hyp.19.1.40

    CAS  Article  PubMed  Google Scholar 

  210. Sakowitz OW et al (2001) Relation of cerebral energy metabolism and extracellular nitrite and nitrate concentrations in patients after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 21:1067–1076. https://doi.org/10.1097/00004647-200109000-00004

    CAS  Article  PubMed  Google Scholar 

  211. Sakowitz OW et al (2009) Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke 40:e519–e522. https://doi.org/10.1161/STROKEAHA.109.549303

    CAS  Article  PubMed  Google Scholar 

  212. Sakowitz OW et al (2013) Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 44:220–223. https://doi.org/10.1161/STROKEAHA.112.672352

    Article  PubMed  Google Scholar 

  213. Samanci B, Coban O, Baykan B (2016) Late onset aura may herald cerebral amyloid angiopathy: a case report. Cephalalgia 36:998–1001. https://doi.org/10.1177/0333102415620253

    Article  PubMed  Google Scholar 

  214. Santos E, Sanchez-Porras R, Sakowitz OW, Dreier JP, Dahlem MA (2017) Heterogeneous propagation of spreading depolarizations in the lissencephalic and gyrencephalic brain J Cereb Blood Flow Metab 271678X16689801. https://doi.org/10.1177/0271678X16689801

    Google Scholar 

  215. Schade JP (1959) Maturational aspects of EEG and of spreading depression in rabbit. J Neurophysiol 22:245–257. https://doi.org/10.1152/jn.1959.22.3.245

    CAS  Article  PubMed  Google Scholar 

  216. Scholl MJ et al (2017) Large field-of-view movement-compensated intrinsic optical signal imaging for the characterization of the haemodynamic response to spreading depolarizations in large gyrencephalic brains. J Cereb Blood Flow Metab 37:1706–1719. https://doi.org/10.1177/0271678X16668988

    Article  PubMed  Google Scholar 

  217. Selman WR, Lust WD, Pundik S, Zhou Y, Ratcheson RA (2004) Compromised metabolic recovery following spontaneous spreading depression in the penumbra. Brain Res 999:167–174. https://doi.org/10.1016/j.brainres.2003.11.016

    CAS  Article  PubMed  Google Scholar 

  218. Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011–1032. https://doi.org/10.1097/00004647-200007000-00001

    CAS  Article  PubMed  Google Scholar 

  219. Shibata M (1978) Unilateral cortical spreading depression in the rat: effects on feeding, drinking and other behaviors. Brain research bulletin 3:395–400

    CAS  PubMed  Google Scholar 

  220. Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C (2006) Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cereb Blood Flow Metab 26:1018–1030. https://doi.org/10.1038/sj.jcbfm.9600252

    Article  PubMed  Google Scholar 

  221. Shuttleworth CW et al (2019) Which spreading depolarizations are deleterious to brain tissue? Neurocritical care. https://doi.org/10.1007/s12028-019-00776-7

    Google Scholar 

  222. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    CAS  PubMed  Google Scholar 

  223. Somjen GG (2004) Irreversible hypoxic (ischemic) neuron injury. In: Somjen GG (ed) Ions in the brain. Oxford University Press, New York, pp 338–372

    Google Scholar 

  224. Sonn J, Mayevsky A (2000) Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Res 882:212–216

    CAS  PubMed  Google Scholar 

  225. Spong KE, Dreier JP, Robertson RM (2017) A new direction for spreading depolarization: investigation in the fly brain channels (Austin). 11:97–98. https://doi.org/10.1080/19336950.2016.1239898

    PubMed  PubMed Central  Google Scholar 

  226. Sramka M, Brozek G, Bures J, Nadvornik P (1977) Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl Neurophysiol 40:48–61

    PubMed  Google Scholar 

  227. Stanton JED, Chandratheva A, Wilson D, Hostettler IC, Islam S, Werring DJ (2019) Clinical features distinguish cerebral amyloid angiopathy-associated convexity subarachnoid haemorrhage from suspected TIA. J Neurol. https://doi.org/10.1007/s00415-019-09558-9

    PubMed  PubMed Central  Google Scholar 

  228. Steffensen AB, Sword J, Croom D, Kirov SA, MacAulay N (2015) Chloride cotransporters as a molecular mechanism underlying spreading depolarization-induced dendritic beading. J Neurosci 35:12172–12187. https://doi.org/10.1523/JNEUROSCI.0400-15.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  229. Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS (2010) 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma 27:1343–1353. https://doi.org/10.1089/neu.2009.1206

    Article  PubMed  Google Scholar 

  230. Stocchetti N, Paterno R, Citerio G, Beretta L, Colombo A (2012) Traumatic brain injury in an aging population. J Neurotrauma 29:1119–1125. https://doi.org/10.1089/neu.2011.1995

    Article  PubMed  Google Scholar 

  231. Stocchetti N et al (2017) Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol 16:452–464. https://doi.org/10.1016/S1474-4422(17)30118-7

    Article  PubMed  Google Scholar 

  232. Strong AJ et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33:2738–2743

    PubMed  Google Scholar 

  233. Strong AJ et al (2007) Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130:995–1008. https://doi.org/10.1093/brain/awl392

    Article  PubMed  Google Scholar 

  234. Stuart RM et al (2010) Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocritical care 12:188–198. https://doi.org/10.1007/s12028-010-9330-9

    Article  PubMed  Google Scholar 

  235. Sukhotinsky I, Dilekoz E, Moskowitz MA, Ayata C (2008) Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat. J Cereb Blood Flow Metab 28:1369–1376. https://doi.org/10.1038/jcbfm.2008.35

    Article  PubMed  Google Scholar 

  236. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340. https://doi.org/10.1152/physrev.00027.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  237. Takano K et al (1996) The role of spreading depression in focal ischemia evaluated by diffusion mapping. Ann Neurol 39:308–318. https://doi.org/10.1002/ana.410390307

    CAS  Article  PubMed  Google Scholar 

  238. Takano T et al (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762. https://doi.org/10.1038/nn1902

    CAS  Article  PubMed  Google Scholar 

  239. Tanaka E, Yamamoto S, Kudo Y, Mihara S, Higashi H (1997) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol 78:891–902

    CAS  PubMed  Google Scholar 

  240. Tasaki I, Byrne PM (1991) Demonstration of heat production associated with spreading depression in the amphibian retina. Biochem Biophys Res Commun 174:293–297

    CAS  PubMed  Google Scholar 

  241. Tidow H, Aperia A, Nissen P (2010) How are ion pumps and agrin signaling integrated? Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2010.05.004

    CAS  PubMed  Google Scholar 

  242. Ulrich ND, Lapeyre ER, Moore RC (2016) Hemorrhagic stroke resulting from venous malformation at 20 weeks of pregnancy. Ochsner J 16:542–544

    PubMed  PubMed Central  Google Scholar 

  243. Urbach A, Bruehl C, Witte OW (2006) Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci 24:841–856. https://doi.org/10.1111/j.1460-9568.2006.04862.x

    Article  PubMed  Google Scholar 

  244. Urbach A, Baum E, Braun F, Witte OW (2017) Cortical spreading depolarization increases adult neurogenesis, and alters behavior and hippocampus-dependent memory in mice. J Cereb Blood Flow Metab 37:1776–1790. https://doi.org/10.1177/0271678X16643736

    Article  PubMed  Google Scholar 

  245. van Harreveld A (1946) Depolarisation in the spinal cord caused by asphyxiation. Am J Physiol 147:669–684

    Google Scholar 

  246. van Harreveld A (1959) Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J Neurochem 3:300–315

    Google Scholar 

  247. Van Harreveld A, Khattab FI (1967) Changes in cortical extracellular space during spreading depression investigated with the electron microscope. J Neurophysiol 30:911–929

    PubMed  Google Scholar 

  248. Von der Brelie C, Seifert M, Rot S, Tittel A, Sanft C, Meier U, Lemcke J (2017) Sedation of patients with acute aneurysmal subarachnoid hemorrhage with ketamine is safe and might influence the occurrence of cerebral infarctions associated with delayed cerebral ischemia world. Neurosurg 97:374–382. https://doi.org/10.1016/j.wneu.2016.09.121

    Article  Google Scholar 

  249. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM (1999) Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 44:1237–1247 discussion 1247-1238

    CAS  PubMed  Google Scholar 

  250. Vosoughi R, Walkty A, Drebot MA, Kadkhoda K (2018) Jamestown Canyon virus meningoencephalitis mimicking migraine with aura in a resident of Manitoba. CMAJ 190:E262–E264. https://doi.org/10.1503/cmaj.170940

    Article  PubMed  PubMed Central  Google Scholar 

  251. Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    CAS  PubMed  Google Scholar 

  252. Weidauer S, Vatter H, Beck J, Raabe A, Lanfermann H, Seifert V, Zanella F (2008) Focal laminar cortical infarcts following aneurysmal subarachnoid haemorrhage. Neuroradiology 50:1–8. https://doi.org/10.1007/s00234-007-0294-1

    Article  PubMed  Google Scholar 

  253. Windmuller O, Lindauer U, Foddis M, Einhaupl KM, Dirnagl U, Heinemann U, Dreier JP (2005) Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO. Brain 128:2042–2051. https://doi.org/10.1093/brain/awh545

    Article  PubMed  Google Scholar 

  254. Winkler MK et al (2012) Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 53(Suppl 6):22–30. https://doi.org/10.1111/j.1528-1167.2012.03699.x

    Article  PubMed  PubMed Central  Google Scholar 

  255. Winkler MK et al (2017) Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 37:1841–1856. https://doi.org/10.1177/0271678X16641424

    CAS  Article  PubMed  Google Scholar 

  256. Woitzik J et al (2013) Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology 80:1095–1102. https://doi.org/10.1212/WNL.0b013e3182886932

    Article  PubMed  Google Scholar 

  257. Woods RP, Iacoboni M, Mazziotta JC (1994) Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 331:1689–1692

    CAS  PubMed  Google Scholar 

  258. Yanamoto H et al (2005) Induced spreading depression activates persistent neurogenesis in the subventricular zone, generating cells with markers for divided and early committed neurons in the caudate putamen and cortex. Stroke 36:1544–1550. https://doi.org/10.1161/01.STR.0000169903.09253.c7

    Article  PubMed  Google Scholar 

  259. Yao H, Markgraf CG, Dietrich WD, Prado R, Watson BD, Ginsberg MD (1994) Glutamate antagonist MK-801 attenuates incomplete but not complete infarction in thrombotic distal middle cerebral artery occlusion in Wistar rats. Brain Res 642:117–122. https://doi.org/10.1016/0006-8993(94)90912-1

    CAS  Article  PubMed  Google Scholar 

  260. Yi NX et al (2019) MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 14:1919–1931. https://doi.org/10.4103/1673-5374.259619

    Article  PubMed  PubMed Central  Google Scholar 

  261. Zandt BJ, ten Haken B, van Putten MJ (2013) Diffusing substances during spreading depolarization: analytical expressions for propagation speed, triggering, and concentration time courses. J Neurosci 33:5915–5923. https://doi.org/10.1523/JNEUROSCI.5115-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by grants of the Deutsche Forschungsgemeinschaft DFG DR 323/5-1 to Dr. Dreier and Dr. Woitzik and DFG DR 323/10-1, FP7 no. 602150 CENTER-TBI and Era-Net Neuron EBio2 to Dr. Dreier.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jens P. Dreier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Major, S., Huo, S., Lemale, C.L. et al. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 42, 57–80 (2020). https://doi.org/10.1007/s11357-019-00142-7

Download citation

Keywords

  • Spreading depression
  • Migraine aura
  • Cerebral amyloid angiopathy
  • Subarachnoid hemorrhage
  • Delayed cerebral ischemia