Skip to main content

The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension

Abstract

Hypertension has been linked with peripheral and central reductions in vascular density, and with devastating effects on brain function. However, the underlying mechanisms in the relationship between blood pressure and cognitive impairment have yet to be fully elucidated. Here, we review compelling evidence from two lines of inquiry: one that links microvascular rarefaction with insulin-like growth factor 1 (IGF-1) deficiencies, and another which posits that vascular dysfunction precedes hypertension. Based on the findings from experimental and clinical studies, we propose that these lines of evidence converge, and suggest that age-related declines in IGF-1 concentrations precede microvascular rarefaction, initiate an increase in vascular resistance, and therefore are causally linked to onset of hypertension. Physical exercise provides a relevant model for supporting our premise, given the well-established effects of exercise in attenuating vascular dysfunction, hypertension, IGF-1 deficiency, and cognitive decline. We highlight here the role of exercise-induced increases in blood flow in improving vascular integrity and enhancing angiogenesis via the actions of IGF-1, resulting in reversal of rarefaction and hypertension, and enhancement of cerebral blood flow and cognition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aguiar-Oliveira MH, Bartke A (2018) Growth hormone deficiency: health and longevity. Endocr Rev 40:575–601

    PubMed Central  Google Scholar 

  • Aguiar-Oliveira MH, Oliveira FT, Pereira RM, Oliveira CR, Blackford A, Valenca EH, Santos EG, Gois-Junior MB, Meneguz-Moreno RA, Araujo VP, Oliveira-Neto LA, Almeida RP, Santos MA, Farias NT, Silveira DC, Cabral GW, Calazans FR, Seabra JD, Lopes TF, Rodrigues EO, Porto LA, Oliveira IP, Melo EV, Martari M, Salvatori R (2010) Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J Clin Endocrinol Metab 95:714–721

    CAS  PubMed  Google Scholar 

  • AHA et al. (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association Circulation 133:e38-360 doi:https://doi.org/10.1161/CIR.0000000000000350

  • Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, Thomas KN, Williams MJ, Atkinson G (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586:4005–4010. https://doi.org/10.1113/jphysiol.2008.158279

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • ALLHAT (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997. https://doi.org/10.1001/jama.288.23.2981

    Article  Google Scholar 

  • Angelini A et al (2009) Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch Gerontol Geriatr 49:5–12

    CAS  PubMed  Google Scholar 

  • Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA (1999) Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension 34:655–658

    CAS  PubMed  Google Scholar 

  • Antonios T, Rattray F, Singer D, Markandu N, Mortimer P, MacGregor G (2003) Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart 89:175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arany Z et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451:1008

    CAS  PubMed  Google Scholar 

  • Arsenijevic Y, Weiss S, Schneider B, Aebischer P (2001) Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 21:7194–7202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashpole NM et al (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism–emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971

    CAS  PubMed  Google Scholar 

  • Bailey DM, Marley CJ, Brugniaux JV, Hodson D, New KJ, Ogoh S, Ainslie PN (2013) Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke 44:3235–3238

    PubMed  Google Scholar 

  • Bayes-Genis A, Conover CA, Schwartz RS (2000) The insulin-like growth factor axis: a review of atherosclerosis and restenosis. Circ Res 86:125–130

    CAS  PubMed  Google Scholar 

  • Beason-Held LL, Moghekar A, Zonderman AB, Kraut MA, Resnick SM (2007) Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke 38:1766–1773

    PubMed  Google Scholar 

  • Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137:e67–e492

    PubMed  Google Scholar 

  • Berglund G, Andersson O, Wilhelmsen L (1976) Prevalence of primary and secondary hypertension: studies in a random population sample. Br Med J 2:554–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berrigan D, Potischman N, Dodd KW, Hursting SD, Lavigne J, Barrett JC, Ballard-Barbash R (2009) Race/ethnic variation in serum levels of IGF-I and IGFBP-3 in US adults. Growth Hormon IGF Res 19:146–155

    CAS  Google Scholar 

  • Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013:657508. https://doi.org/10.1155/2013/657508

    Article  PubMed  PubMed Central  Google Scholar 

  • Birns J, Kalra L (2009) Cognitive function and hypertension. J Hum Hypertens 23:86

    CAS  PubMed  Google Scholar 

  • Bosch AJ, Harazny JM, Kistner I, Friedrich S, Wojtkiewicz J, Schmieder RE (2017) Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc Disord 17:300

    PubMed  PubMed Central  Google Scholar 

  • Brabant G et al (2003) Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Hormone Res Paediatr 60:53–60

    CAS  Google Scholar 

  • Brady CB, Spiro A III, Gaziano JM (2005) Effects of age and hypertension status on cognition: the Veterans Affairs Normative Aging Study. Neuropsychology 19:770

    PubMed  Google Scholar 

  • Brandes RP (2014) Endothelial dysfunction and hypertension. Hypertension 64:924–928

    CAS  PubMed  Google Scholar 

  • Braz ID, Fisher JP (2016) The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 594:4471–4483

    CAS  PubMed  Google Scholar 

  • Breese CR, Ingram RL, Sonntag WE (1991) Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. J Gerontol 46:B180–B187

    CAS  PubMed  Google Scholar 

  • Brown AD, McMorris CA, Longman RS, Leigh R, Hill MD, Friedenreich CM, Poulin MJ (2010) Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging 31:2047–2057

    PubMed  Google Scholar 

  • Brown-Borg HM (1996) Dwarf mice and the ageing process. Nature 384:33

    CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Bartke A (2012) GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol Ser A: Biomed Sci Med Sci 67:652–660

    Google Scholar 

  • Burgers AMG, Biermasz NR, Schoones JW, Pereira AM, Renehan AG, Zwahlen M, Egger M, Dekkers OM (2011) Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab 96:2912–2920

    CAS  PubMed  Google Scholar 

  • Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE (2014) Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 73:734–746

    CAS  PubMed  Google Scholar 

  • Carretero OA, Oparil S (2000) Essential hypertension: part I: definition and etiology. Circulation 101:329–335

    CAS  PubMed  Google Scholar 

  • Carro E, Nunēz A, Busiguina S, Aleman-Torres I (2000) Circulating insulin-like growth factor i mediates effects of exercise on the brain. J Neurosci 20:2926–2933. https://doi.org/10.1523/JNEUROSCI.20-08-02926.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007a) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39:1401–1407

    PubMed  Google Scholar 

  • Cassilhas RC, Viana VAR, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007b) The impact of resistance exercise on the cognitive function of the elderly. Am Coll Sports Med. https://doi.org/10.1249/mss.0b013e318060111f

    Google Scholar 

  • Cechetti F, Pagnussat AS, Worm PV, Elsner VR, Ben J, da Costa MS, Mestriner R, Weis SN, Netto CA (2012) Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull 87:109–116. https://doi.org/10.1016/j.brainresbull.2011.10.006

    CAS  Article  PubMed  Google Scholar 

  • Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signalling in health and disease. Clin Sci 110:167–173

    CAS  Google Scholar 

  • Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage 55:468–478

    PubMed  Google Scholar 

  • Cipolla MJ (2009) The cerebral circulation Integrated systems physiology: from molecule to function 1:1-59

    Google Scholar 

  • Ciuffetti G, Pasqualini L, Pirro M, Lombardini R, De Sio M, Schillaci G, Mannarino E (2002) Blood rheology in men with essential hypertension and capillary rarefaction. J Hum Hypertens 16:533

    CAS  PubMed  Google Scholar 

  • Ciuffetti G, Schillaci G, Innocente S, Lombardini R, Pasqualini L, Notaristefano S, Mannarino E (2003) Capillary rarefaction and abnormal cardiovascular reactivity in hypertension. J Hypertens 21:2297–2303

    CAS  PubMed  Google Scholar 

  • Clemmons DR (2012) Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol Metab Clin N Am 41:425-viii. https://doi.org/10.1016/j.ecl.2012.04.017

    CAS  Article  Google Scholar 

  • Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF (2013) Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr 56:10–15. https://doi.org/10.1016/j.archger.2012.06.003

    CAS  Article  PubMed  Google Scholar 

  • Coelho FG et al (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimer's Dis: JAD 39:401–408. https://doi.org/10.3233/jad-131073

    CAS  Article  Google Scholar 

  • Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, Andreotti F (2004) Insulin-like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    PubMed  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472. https://doi.org/10.1016/j.tins.2007.06.011

    CAS  Article  PubMed  Google Scholar 

  • Csiszar A et al (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer’s disease. Geroscience 39:359–372

    PubMed  PubMed Central  Google Scholar 

  • Currie J, Ramsbottom R, Ludlow H, Nevill A, Gilder M (2009) Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women. Neurosci Lett 451:152–155. https://doi.org/10.1016/j.neulet.2008.12.043

    CAS  Article  PubMed  Google Scholar 

  • Cutler J (1996) High blood pressure and end-organ damage. J Hypertens Supplement: Off J Int Soc Hypertens 14:S3–S6

    CAS  Google Scholar 

  • de La Torre JC (2012) Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012

  • De Smedt A et al (2011) Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke 42:2180–2185

    PubMed  Google Scholar 

  • Denti L et al (2004) Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med 117:312–317

    CAS  PubMed  Google Scholar 

  • Díez J (1999) Insulin-like growth factor I in essential hypertension. Kidney Int 55:744–759

    PubMed  Google Scholar 

  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006a) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833

    CAS  PubMed  Google Scholar 

  • Ding YH, Li J, Yao WX, Rafols JA, Clark JC, Ding Y (2006b) Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol 112:74–84. https://doi.org/10.1007/s00401-006-0076-6

    CAS  Article  PubMed  Google Scholar 

  • Doi T, Shimada H, Makizako H, Tsutsumimoto K, Hotta R, Nakakubo S, Suzuki T (2015) Association of insulin-like growth factor-1 with mild cognitive impairment and slow gait speed. Neurobiol Aging 36:942–947

    CAS  PubMed  Google Scholar 

  • Dubey RK, Oparil S, Imthurn B, Jackson EK (2002) Sex hormones and hypertension. Cardiovasc Res 53:688–708

    CAS  PubMed  Google Scholar 

  • Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 486:39–47

    PubMed  Google Scholar 

  • ElAli A, Thériault P, Préfontaine P, Rivest S (2013) Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathologica Communications 1:75

    PubMed  PubMed Central  Google Scholar 

  • Elias MF, Wolf PA, D'Agostino RB, Cobb J, White LR (1993) Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol 138:353–364

    CAS  PubMed  Google Scholar 

  • Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J (Sudbury, Mass) 6:S245–S249

    Google Scholar 

  • Erickson KI et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022. https://doi.org/10.1073/pnas.1015950108

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Banducci SE, Weinstein AM, Macdonald AW 3rd, Ferrell RE, Halder I, Flory JD, Manuck SB (2013) The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol Sci 24:1770–1779. https://doi.org/10.1177/0956797613480367

    Article  PubMed  Google Scholar 

  • Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, Palmer TD (2003) VEGF is necessary for exercise-induced adult hippocampalneurogenesis. Eur J Neurosci 18:2803–2812. https://doi.org/10.1046/j.1460-9568.2003.03041.x

    Article  PubMed  Google Scholar 

  • Fang Y, McFadden S, Darcy J, Hill CM, Huber JA, Verhulst S, Kopchick JJ, Miller RA, Sun LY, Bartke A (2017) Differential effects of early-life nutrient restriction in long-lived GHR-KO and normal mice. GeroScience 39:347–356. https://doi.org/10.1007/s11357-017-9978-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui MH, Gulinello M, Branch CA, Gubbi S, Patel K, Moellering DR, Tarantini S, Kiss T, Yabluchanskiy A, Ungvari Z, Sonntag WE, Huffman DM (2019) Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. GeroScience 41:185–208. https://doi.org/10.1007/s11357-019-00065-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Faupel-Badger JM, Berrigan D, Ballard-Barbash R, Potischman N (2009) Anthropometric correlates of insulin-like growth factor 1 (IGF-1) and IGF binding protein-3 (IGFBP-3) levels by race/ethnicity and gender. Ann Epidemiol 19:841–849

    PubMed  PubMed Central  Google Scholar 

  • Feihl F, Liaudet L, Waeber B, Levy BI (2006) Hypertension: a disease of the microcirculation? Hypertension 48:1012–1017

    CAS  PubMed  Google Scholar 

  • Feldstein CA (2012) Association between chronic blood pressure changes and development of Alzheimer’s disease. J Alzheimers Dis 32:753–763

    PubMed  Google Scholar 

  • Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM (2012) Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16,-21, and-126. Hypertension 59:513–520

    CAS  PubMed  Google Scholar 

  • Fernandez AM, Torres-Alemán I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:225

    CAS  PubMed  Google Scholar 

  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323:96–109. https://doi.org/10.1016/j.neuroscience.2015.03.064

    CAS  Article  PubMed  Google Scholar 

  • Floel A et al (2010) Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage 49:2756–2763. https://doi.org/10.1016/j.neuroimage.2009.10.043

    CAS  Article  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27

    CAS  PubMed  Google Scholar 

  • Frater J, Lie D, Bartlett P, McGrath JJ (2018) Insulin-like growth factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: a review. Ageing Res Rev 42:14–27

    CAS  PubMed  Google Scholar 

  • Friedman W (2012) Growth factors. In: Basic neurochemistry. Elsevier, pp 546-557

  • Fukuda R, Hirota K, Fan F, Do Jung Y, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277:38205–38211

    CAS  PubMed  Google Scholar 

  • Fulop GA et al (2018) IGF-1 deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of Intracerebral hemorrhages in aging. J Gerontol: Ser A 74:446–454

    Google Scholar 

  • Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615. https://doi.org/10.1038/nri3041

    CAS  Article  PubMed  Google Scholar 

  • Goodman-Gruen D, Barrett-Connor E (1997) Epidemiology of insulin-like growth factor-I in elderly men and women: the Rancho Bernardo Study. Am J Epidemiol 145:970–976

    CAS  PubMed  Google Scholar 

  • Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1782:197–228. https://doi.org/10.1016/j.bbadis.2008.01.006

    CAS  Article  Google Scholar 

  • Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42:2672–2713. https://doi.org/10.1161/STR.0b013e3182299496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould IG, Tsai P, Kleinfeld D, Linninger A (2017) The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab 37:52–68

    CAS  PubMed  Google Scholar 

  • Greene AS, Tonellato PJ, Lui J, Lombard J, Cowley A Jr (1989) Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Phys Heart Circ Phys 256:H126–H131

    CAS  Google Scholar 

  • Greene AS, Tonellato PJ, Zhang Z, Lombard JH, Cowley AW Jr (1992) Effect of microvascular rarefaction on tissue oxygen delivery in hypertension. Am J Phys Heart Circ Phys 262:H1486–H1493

    CAS  Google Scholar 

  • Guevara-Aguirre J et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13–70ra13

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Wang X-F (2009) Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19:71

    CAS  PubMed  Google Scholar 

  • Hall CN et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrela M et al (1996) Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 98:2612–2615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins PB, Fernández JR, Goran MI, Gower BA (2005) Early ethnic difference in insulin-like growth factor-1 is associated with African genetic admixture. Pediatr Res 58:850

    CAS  PubMed  Google Scholar 

  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    PubMed  Google Scholar 

  • Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD (1999) Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 57:421–450

    CAS  PubMed  Google Scholar 

  • Humar R, Zimmerli L, Battegay E (2009) Angiogenesis and hypertension: an update. J Hum Hypertens 23:773

    CAS  PubMed  Google Scholar 

  • Hunt KJ, Lukanova A, Rinaldi S, Lundin E, Norat T, Palmqvist R, Stattin P, Riboli E, Hallmans G, Kaaks R (2006) A potential inverse association between insulin-like growth factor I and hypertension in a cross-sectional study. Ann Epidemiol 16:563–571

    PubMed  Google Scholar 

  • Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7:476–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol Ser A Biol Med Sci 58:B291–B296

    Google Scholar 

  • Inai T et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji LL, Kang C (2015) Role of PGC-1α in sarcopenia: etiology and potential intervention-a mini-review. Gerontology 61:139–148

    CAS  PubMed  Google Scholar 

  • Johnsen SP, Hundborg HH, Sørensen HT, Ørskov H, Tjønneland A, Overvad K, Jørgensen JOL (2005) Insulin-like growth factor (IGF) I,-II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 90:5937–5941

    CAS  PubMed  Google Scholar 

  • Joutel A, Monet-Leprêtre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120:433–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Hormon IGF Res 13:113–170

    CAS  Google Scholar 

  • Juul A et al (1994) Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab 78:744–752

    CAS  PubMed  Google Scholar 

  • Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T (2002) Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 106:939–944

    CAS  PubMed  Google Scholar 

  • Kamba T, McDonald D (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannel W, Dawber T, Sorlie P, Wolf P (1976) Components of blood pressure and risk of atherothrombotic brain infarction: the Framingham study. Stroke 7:327–331

    CAS  PubMed  Google Scholar 

  • Kawamura J, Terayama Y, Takashima S, Obara K, Pavol MA, Meyer JS, Mortel KF, Weathers S (1993) Leuko-araiosis and cerebral perfusion in normal aging. Exp Aging Res 19:225–240

    CAS  PubMed  Google Scholar 

  • Khalil RA (2005) Sex hormones as potential modulators of vascular function in hypertension. Hypertension 46:249–254

    CAS  PubMed  Google Scholar 

  • Kilander L, Nyman H, Boberg M, Hansson L, Lithell H (1998) Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension 31:780–786. https://doi.org/10.1161/01.Hyp.31.3.780

    CAS  Article  PubMed  Google Scholar 

  • Klabunde RE (2005) Cardiovascular physiology concepts. Lippincott Williams & Wilkins

  • Koegelenberg AS, Smith W, Schutte R, Schutte AE (2016) IGF-1 and NT-pro BNP in a black and white population: the SABPA study. Eur J Clin Investig 46:795–803

    CAS  Google Scholar 

  • Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133. https://doi.org/10.1177/1947601911423654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Landi F, Capoluongo E, Russo A, onder G, Cesari M, Lulli P, Minucci A, Pahor M, Zuppi C, Bernabei R (2007) Free insulin-like growth factor-I and cognitive function in older persons living in community. Growth Hormon IGF Res 17:58–66

    CAS  Google Scholar 

  • Lange C, Storkebaum E, De Almodóvar CR, Dewerchin M, Carmeliet P (2016) Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 12:439

    CAS  PubMed  Google Scholar 

  • Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D (2004) The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab 89:114–120

    CAS  PubMed  Google Scholar 

  • Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ (1995) The association between midlife blood pressure levels and late-life cognitive function: the Honolulu-Asia Aging Study. Jama 274:1846–1851

    CAS  PubMed  Google Scholar 

  • Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • le Noble J, Tangelder G, Slaaf D, van Essen H, Reneman R, Struyker-Boudier H (1990) A functional morphometric study of the cremaster muscle microcirculation in young spontaneously hypertensive rats. J Hypertens 8:741

    PubMed  Google Scholar 

  • le Noble F, Stassen F, Hacking W, Struijker BH (1998) Angiogenesis and hypertension. J Hypertens 16:1563

    PubMed  Google Scholar 

  • Lee A (2002) Haemorheological, platelet and endothelial factors in essential hypertension. J Hum Hypertens 16:529

    CAS  PubMed  Google Scholar 

  • Leung K-C, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721

    CAS  PubMed  Google Scholar 

  • Levy B, Ambrosio G, Pries A, Struijker-Boudier H (2001) Microcirculation in hypertension: a new target for treatment? Circulation 104:735–740

    CAS  PubMed  Google Scholar 

  • Li Y, Shen Q, Huang S, Li W, Muir ER, Long JA, Duong TQ (2015) Cerebral angiography, blood flow and vascular reactivity in progressive hypertension. Neuroimage 111:329–337

    PubMed  Google Scholar 

  • Liang J, Wei W, Xia W, Tao J (2019a) Effect of exercise on improving microvascular rarefaction in patients with hypertension: primary results of EXCAVATION-CHN1. J Am Coll Cardiol 73:1860

    Google Scholar 

  • Liang J, Xia W, Tong X, Tao J (2019b) Moderate intensity exercise attenuates hypertensive microvascular rarefaction through enhancing the function of endothelial progenitor cells. J Am Coll Cardiol 73:2090

    Google Scholar 

  • Lichtenwalner R, Forbes M, Bennett S, Lynch C, Sonntag W, Riddle D (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107:603–613

    CAS  PubMed  Google Scholar 

  • Lip GYH, Hall JE (2007) Comprehensive hypertension E-book. Elsevier Health Sciences,

  • Lis C, Gaviria M (1997) Vascular dementia, hypertension, and the brain. Neurol Res 19:471–480

    CAS  PubMed  Google Scholar 

  • Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci 101:9833–9838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H et al (2010) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434

    PubMed  PubMed Central  Google Scholar 

  • Lucas SJ, Ainslie PN, Murrell CJ, Thomas KN, Franz EA, Cotter JD (2012) Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion. Exp Gerontol 47:541–551. https://doi.org/10.1016/j.exger.2011.12.002

    Article  PubMed  Google Scholar 

  • Lucas SJ, Cotter JD, Brassard P, Bailey DM (2015) High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab 35:902–911. https://doi.org/10.1038/jcbfm.2015.49

    Article  PubMed  PubMed Central  Google Scholar 

  • Luoto R, Sharrett AR, Schreiner P, Sorlie PD, Arnett D, Ephross S (2000) Blood pressure and menopausal transition: the Atherosclerosis Risk in Communities study (1987–95). J Hypertens 18:27–33

    CAS  PubMed  Google Scholar 

  • Lynch CD, Cooney PT, Bennett SA, Thornton PL, Khan AS, Ingram RL, Sonntag WE (1999) Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats. Neurobiol Aging 20:191–200

    CAS  PubMed  Google Scholar 

  • Maass A et al (2016) Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 131:142–154. https://doi.org/10.1016/j.neuroimage.2015.10.084

    CAS  Article  PubMed  Google Scholar 

  • McGreevy K, Hoel B, Lipsitz S, Bissada N, Hoel D (2005) Racial and anthropometric differences in plasma levels of insulin-like growth factor I and insulin-like growth factor binding protein-3. Urology 66:587–592

    PubMed  Google Scholar 

  • Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, Wisloff U, Ingul CB, Stoylen A (2012) Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol 19:151–160

    PubMed  Google Scholar 

  • Muller M, van der Graaf Y, Visseren FL, Mali WPTM, Geerlings MI, Group SS (2012) Hypertension and longitudinal changes in cerebral blood flow: The SMART-MR study. Ann Neurol 71:825–833

    PubMed  Google Scholar 

  • Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT Jr, Whelton PK (2018) Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation 137:109–118

    PubMed  Google Scholar 

  • Neeper SA, Góauctemez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109

    CAS  PubMed  Google Scholar 

  • Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    CAS  PubMed  Google Scholar 

  • Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV, Watt GC (1997) Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest 99:1873–1879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novak V, Hajjar I (2010) The relationship between blood pressure and cognitive function. Nat Rev Cardiol 7:686–698. https://doi.org/10.1038/nrcardio.2010.161

    Article  PubMed  PubMed Central  Google Scholar 

  • O’sullivan M, Lythgoe D, Pereira A, Summers P, Jarosz J, Williams S, Markus H (2002) Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 59:321–326

    PubMed  Google Scholar 

  • Oberlin LE, Waiwood AM, Cumming TB, Marsland AL, Bernhardt J, Erickson KI (2017) Effects of physical activity on poststroke cognitive function: a meta-analysis of randomized controlled trials. Stroke 48:3093–3100. https://doi.org/10.1161/STROKEAHA.117.017319

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, DeKosky S (2003) Vascular cognitive impairment. The Lancet Neurology 2:89–98. https://doi.org/10.1016/s1474-4422(03)00305-3

    Article  PubMed  Google Scholar 

  • Okura Y, Brink M, Zahid AA, Anwar A, Delafontaine P (2001) Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J Mol Cell Cardiol 33:1777–1789

    CAS  PubMed  Google Scholar 

  • Paulson O, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    CAS  PubMed  Google Scholar 

  • Pavy-Le Traon A, Costes-Salon M-C, Galinier M, Fourcade J, Larrue V (2002) Dynamics of cerebral blood flow autoregulation in hypertensive patients. J Neurol Sci 195:139–144

    Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira DS et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 104:5638–5643. https://doi.org/10.1073/pnas.0611721104

    CAS  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) Exercise and hypertension. Med Sci Sports Exerc 36:533–553

    PubMed  Google Scholar 

  • Phillips SJ, Whisnant JP (1992) Hypertension and the brain. Arch Intern Med 152:938–945

    CAS  PubMed  Google Scholar 

  • Pialoux V, Brown AD, Leigh R, Friedenreich CM, Poulin MJ (2009) Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension 54:1014–1020. https://doi.org/10.1161/HYPERTENSIONAHA.109.138917

    CAS  Article  PubMed  Google Scholar 

  • Platz EA, Pollak MN, Rimm EB, Majeed N, Tao Y, Willett WC, Giovannucci E (1999) Racial variation in insulin-like growth factor-1 and binding protein-3 concentrations in middle-aged men. Cancer Epidemiol Prev Biomark 8:1107–1110

    CAS  Google Scholar 

  • Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z (2017) The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 39:147–160. https://doi.org/10.1007/s11357-017-9966-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Poehlman E, Toth M, Ades P, Rosen C (1997) Menopause-associated changes in plasma lipids, insulin-like growth factor I and blood pressure: a longitudinal study. Eur J Clin Investig 27:322–326

    CAS  Google Scholar 

  • Poston L (2007) Influences of maternal nutritional status on vascular function in the offspring. Curr Drug Targets 8:914–922

    CAS  PubMed  Google Scholar 

  • Prewitt R (1990) Structual and functional rarefaction of microvessels in hypertension. Blood Vessel Changes in Hypertension: Structure and Function:71-90

  • Prewitt R, Chen I, Dowell R (1982) Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Phys Heart Circ Phys 243:H243–H251

    CAS  Google Scholar 

  • Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, Guttmann CR, Fisher ND, Lipsitz LA, Sorond FA (2014) Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab 34:228–234

    PubMed  Google Scholar 

  • Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. The Lancet Neurology 4:487–499

    PubMed  Google Scholar 

  • Quinlan P, Horvath A, Nordlund A, Wallin A, Svensson J (2017) Low serum insulin-like growth factor-I (IGF-I) level is associated with increased risk of vascular dementia. Psychoneuroendocrinology 86:169–175

    CAS  PubMed  Google Scholar 

  • Radak Z et al (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    CAS  PubMed  Google Scholar 

  • Radak Z, Marton O, Nagy E, Koltai E, Goto S (2013a) The complex role of physical exercise and reactive oxygen species on brain. J Sport Health Sci 2:87–93. https://doi.org/10.1016/j.jshs.2013.04.001

    Article  Google Scholar 

  • Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013b) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18:1208–1246. https://doi.org/10.1089/ars.2011.4498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Raz N, Rodrigue KM, Acker JD (2003) Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behav Neurosci 117:1169–1180. https://doi.org/10.1037/0735-7044.117.6.1169

    Article  PubMed  Google Scholar 

  • Risau W (1997) Mech Angiogenesis Nat 386:671

    CAS  Google Scholar 

  • Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. In: Seminars in nephrology, vol 6. Elsevier, pp 591-601

  • Rohrmann S et al (2009) Racial variation in sex steroid hormones and the insulin-like growth factor axis in umbilical cord blood of male neonates. Cancer Epidemiol Prev Biomark 18:1484–1491

    CAS  Google Scholar 

  • Rollero A, Murialdo G, Fonzi S, Garrone S, Gianelli MV, Gazzerro E, Barreca A, Polleri A (1998) Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology 38:73–79

    CAS  PubMed  Google Scholar 

  • Romero JR et al (2014) Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study. Stroke 45:1492–1494

    PubMed  PubMed Central  Google Scholar 

  • Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, Völker K, Ho HV, Mooren F, Knecht S, Flöel A (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32:1304–1319. https://doi.org/10.1016/j.neurobiolaging.2009.08.001

    CAS  Article  PubMed  Google Scholar 

  • Sádaba M, Martín-Estal I, Puche J, Castilla-Cortázar I (2016) Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim Biophys Acta (BBA)-Mol Basis Dis 1862:1267–1278

    Google Scholar 

  • Schutte AE et al (2010) A significant decline in IGF-I may predispose young Africans to subsequent cardiometabolic vulnerability. J Clin Endocrinol Metab 95:2503–2507

    CAS  PubMed  Google Scholar 

  • Schwarz AJ, Brasel J, Hintz RL, Mohan S, Cooper D (1996) Acute effect of brief low-and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clinical Endocrinol Metab 81:3492–3497

    CAS  Google Scholar 

  • Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK (2004) Differential effects of aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb Cortex 15:571–577

    PubMed  Google Scholar 

  • Small HY, Montezano AC, Rios FJ, Savoia C, Touyz RM (2014) Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol 30:534–543

    PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138:3515–3520

    CAS  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS (1999) Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol Ser A: Biomed Sci Med Sci 54:B521–B538

    CAS  Google Scholar 

  • Sonntag WE, Lynch C, Thornton P, Khan A, Bennett S, Ingram R (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anatomy 197:575–585

    CAS  Google Scholar 

  • Sonntag WE, Csiszar A, De Cabo R, Ferrucci L, Ungvari Z (2012) Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies. J Gerontol Ser A: Biomed Sci Med Sci 67:587–598

    Google Scholar 

  • Sowers JR (1997) Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 29:691–699

    CAS  PubMed  Google Scholar 

  • SPRINT-MIND (2019) Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321:553–561. https://doi.org/10.1001/jama.2018.21442

    Article  Google Scholar 

  • Steeghs N, Gelderblom H, Roodt JO, Christensen O, Rajagopalan P, Hovens M, Putter H, Rabelink TJ, de Koning E (2008) Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 14:3470–3476

    CAS  PubMed  Google Scholar 

  • Stein AM, Silva TMV, Coelho FGDM, Arantes FJ, Costa JLR, Teodoro E, Santos-Galduróz RF (2018) Physical exercise, IGF-1 and cognition A systematic review of experimental studies in the elderly. Dementia & Neuropsychologia 12:114–122

    Google Scholar 

  • Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53:720–727

    CAS  PubMed  Google Scholar 

  • Strandgaard S, Olesen J, Skinhøj E, Lassen N (1973) Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1:507–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Struijker HB, Messing M, Huijberts M (1992) The microcirculation and hypertension. J Hypertens Supplement: Off J Int Soc Hypertens 10:S147–S156

    Google Scholar 

  • Sullivan J, Prewitt RL, Josephs JA (1983) Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension 5:844–851

    CAS  PubMed  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantini S et al (2016) Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age 38:273–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole N, Gautam T, Giles CB, Wren JD, Sonntag WE, Csiszar A, Ungvari Z (2017) Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16:469–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarumi T, Gonzales MM, Fallow B, Nualnim N, Pyron M, Tanaka H, Haley AP (2013) Central artery stiffness, neuropsychological function, and cerebral perfusion in sedentary and endurance-trained middle-aged adults. J Hypertens 31:2400–2409. https://doi.org/10.1097/HJH.0b013e328364decc

    CAS  Article  PubMed  Google Scholar 

  • Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765. https://doi.org/10.1089/ars.2008.2027

    CAS  Article  PubMed  Google Scholar 

  • Tivesten AS et al (2002) Liver-derived insulin-like growth factor-I is involved in the regulation of blood pressure in mice. Endocrinology 143:4235–4242

    CAS  PubMed  Google Scholar 

  • Torres-Aleman I (1999) Insulin-like growth factors as mediators of functional plasticity in the adult brain. Horm Metab Res 31:114–119

    CAS  PubMed  Google Scholar 

  • Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 34:1887–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P, Tarantini S, Csiszar A, Ungvari Z (2016) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Phys Heart Circ Phys 312:H1–H20

    Google Scholar 

  • Trejo J et al (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 12:1118

    CAS  PubMed  Google Scholar 

  • Tsai C-L, Wang C-H, Pan C-Y, Chen F-C (2015) The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front Behav Neurosci 9:23

    PubMed  PubMed Central  Google Scholar 

  • Vale RGDS, Ferrão MLD, Nunes RDAM, Silva JBD, Nodari Júnior RJ, Dantas EHM (2017) Muscle strength, GH and IGF-1 in older women submitted to land and aquatic resistance training. Rev Bras Med Esporte 23:274–279

    Google Scholar 

  • van Praag H (2008) Neurogenesis and exercise: past and future directions. NeuroMolecular Med 10:128–140. https://doi.org/10.1007/s12017-008-8028-z

    CAS  Article  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci 96:13427–13431

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gao JH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. https://doi.org/10.1038/6368

    Article  PubMed  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan S, Wallis M, Polit D, Steele M, Shum D, Morris N (2014) The effects of multimodal exercise on cognitive and physical functioning and brain-derived neurotrophic factor in older women: a randomised controlled trial. Age Ageing 43:623–629. https://doi.org/10.1093/ageing/afu010

    Article  PubMed  Google Scholar 

  • Velloso C (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154:557–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaaren BF, Vernooij MW, de Boer R, Hofman A, Niessen WJ, van der Lugt A, Ikram MA (2013) High blood pressure and cerebral white matter lesion progression in the general population. Hypertension 61:1354–1359

    CAS  PubMed  Google Scholar 

  • Vidal AC et al. (2013) Maternal BMI, IGF-I levels, and birth weight in African American and White Infants. International journal of pediatrics 2013

  • Voss MW et al (2016) Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage 131:113–125. https://doi.org/10.1016/j.neuroimage.2015.10.044

    Article  PubMed  Google Scholar 

  • Watanabe T, Miyazaki A, Katagiri T, Yamamoto H, Idei T, Iguchi T (2005) Relationship between serum insulin-like growth factor-1 levels and Alzheimer's disease and vascular dementia. J Am Geriatr Soc 53:1748–1753

    PubMed  Google Scholar 

  • Westwood AJ, Beiser A, Decarli C, Harris TB, Chen TC, He XM, Roubenoff R, Pikula A, Au R, Braverman LE, Wolf PA, Vasan RS, Seshadri S (2014) Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology 82:1613–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wine RN, McPherson CA, Harry GJ (2009) IGF-1 and pAKT signaling promote hippocampal CA1 neuronal survival following injury to dentate granule cells. Neurotox Res 16:280–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wrann CD et al (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18:649–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe K, Vittinghoff E, Pletcher MJ, Hoang TD, Launer LJ, Whitmer R, Coker LH, Sidney S (2014) Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 129:1560–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yew B, Nation DA (2017) Cerebrovascular resistance: effects on cognitive decline, cortical atrophy, and progression to dementia. Brain 140:1987–2001. https://doi.org/10.1093/brain/awx112

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokokawa T, Kido K, Suga T, Isaka T, Hayashi T, Fujita S (2018) Exercise-induced mitochondrial biogenesis coincides with the expression of mitochondrial translation factors in murine skeletal muscle. Phys Rep 6:e13893

    Google Scholar 

  • Zhang L, Curhan GC, Forman JP (2011) Plasma insulin-like growth factor-1 level and risk of incident hypertension in non-diabetic women. J Hypertens 29:229

    PubMed  PubMed Central  Google Scholar 

  • Zhao E, Tranovich MJ, DeAngelo R, Kontos AP, Wright VJ (2016) Chronic exercise preserves brain function in masters athletes when compared to sedentary counterparts. Phys Sportsmed 44:8–13. https://doi.org/10.1080/00913847.2016.1103641

    Article  PubMed  Google Scholar 

  • Zhu H et al (2017) Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS One 12:e0185561

    PubMed  PubMed Central  Google Scholar 

  • Zoladz J, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K (2008) Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol 59:119–132

    PubMed  Google Scholar 

Download references

Funding

This manuscript was funded in part by the National Institute of General Medical Sciences (NIGMS) 5 T32 GM109780-4 (AMN); National Institute on Aging (NIA) R01AG056769 (TWB); National Heart, Lung, and Blood Institute (NHLBI) 5 T32 HL007457-39 (BK); and The Evelyn F. McKnight Brain Institute at the University of Alabama, Birmingham.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature search, and drafting of the original manuscript (Amani M. Norling). Critical revision for intellectual content (Adam T. Gerstenecker; Thomas W. Buford; Bilal Khan; Suzanne Oparil; Ronald M. Lazar).

Corresponding author

Correspondence to Ronald M. Lazar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norling, A.M., Gerstenecker, A.T., Buford, T.W. et al. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. GeroScience 42, 141–158 (2020). https://doi.org/10.1007/s11357-019-00139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-019-00139-2

Keywords

  • Hypertension
  • IGF-1
  • Growth factor
  • Exercise
  • Rarefaction
  • Cognition
  • Brain