Skip to main content
Log in

Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cortical injury, such as injuries after stroke or age-related ischemic events, triggers a cascade of degeneration accompanied by inflammatory responses that mediate neurological deficits. Therapeutics that modulate such neuroinflammatory responses in the aging brain have the potential to reduce neurological dysfunction and promote recovery. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) are lipid-bound, nanoscale vesicles that can modulate inflammation and enhance recovery in rodent stroke models. We recently assessed the efficacy of intravenous infusions of MSC-EVs (24-h and 14-days post-injury) as a treatment in aged rhesus monkeys (Macaca mulatta) with cortical injury that induced impairment of fine motor function of the hand. Aged monkeys treated with EVs after injury recovered motor function more rapidly and more fully than aged monkeys given a vehicle control. Here, we describe EV-mediated inflammatory changes using histological assays to quantify differences in markers of neuroinflammation in brain tissue between EV and vehicle-treated aged monkeys. The activation status of microglia, the innate macrophages of the brain, is critical to cell fate after injury. Our findings demonstrate that EV treatment after injury is associated with greater densities of ramified, homeostatic microglia, along with reduced pro-inflammatory microglial markers. These findings are consistent with a phenotypic switch of inflammatory hypertrophic microglia towards anti-inflammatory, homeostatic functions, which was correlated with enhanced functional recovery. Overall, our data suggest that EVs reduce neuroinflammation and shift microglia towards restorative functions. These findings demonstrate the therapeutic potential of MSC-derived EVs for reducing neuroinflammation after cortical injury in the aged brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings in this study are available from the corresponding author upon request.

Abbreviations

EVs:

Extracellular vesicles

MSCs:

Mesenchymal stem cells

PG:

Perilesional gray matter

SW:

Sublesional white matter

References

  • Anderson JD et al (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells 34:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker M (2009) Why hES cells make teratomas. Nature Reports Stem Cells Available at: https://www.nature.com/stemcells/2009/0903/090305/full/stemcells.2009.36.html [Accessed March 12, 2019]

  • Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  PubMed  Google Scholar 

  • Casado JG, Blázquez R, Vela FJ, Álvarez V, Tarazona R, Sánchez-Margallo FM (2017) Mesenchymal stem cell-derived exosomes: immunomodulatory evaluation in an antigen-induced synovitis porcine model. Front Vet Sci 4 Available at: https://www.frontiersin.org/articles/10.3389/fvets.2017.00039/full [Accessed March 12, 2019]

  • Chavez JC, Hurko O, Barone FC, Feuerstein GZ (2009) Pharmacologic interventions for stroke: looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke 40 Available at: https://www.ahajournals.org/doi/10.1161/STROKEAHA.109.559914 [Accessed January 3, 2019]

  • Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  CAS  PubMed  Google Scholar 

  • Chiu KB, Lee KM, Robillard KN, MacLean AG (2019) A method to investigate astrocyte and microglial morphological changes in the aging brain of the Rhesus Macaque. Methods Mol Biol 1938:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100

    Article  PubMed  Google Scholar 

  • Chopp M, Zhang ZG (2015) Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs 20:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopp M, Li Y, Zhang ZG (2009) Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40:S143–S145

    Article  PubMed  Google Scholar 

  • Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg CD, Dai J, Zhang C, Ueno Y, Roberts C, Chen J (2012) Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant 21:845–856

    Article  PubMed  Google Scholar 

  • Dubbelaar ML, Kracht L, Eggen BJL, Boddeke EWGM (2018) The kaleidoscope of microglial phenotypes. Front Immunol 9 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079257/ [Accessed March 12, 2019]

  • Estrada A et al (2017) Impending extinction crisis of the world’s primates: why primates matter. Science Advances 3:e1600946

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiala JC, Harris KM (2001) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan W-B, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519

    Article  CAS  PubMed  Google Scholar 

  • Jarmalavičiūtė A, Pivoriūnas A (2016) Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 113:816–822

    Article  PubMed  CAS  Google Scholar 

  • Jeong CH, Kim SM, Lim JY, Ryu CH, Jun JA, Jeun S-S (2014) Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. BioMed Research International Available at: https://www.hindawi.com/journals/bmri/2014/129145/ [Accessed January 3, 2019]

  • Justicia C, Ramos-Cabrer P, Hoehn M (2008) MRI detection of secondary damage after stroke. Stroke 39:1541–1547

    Article  PubMed  Google Scholar 

  • Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558688/ [Accessed January 3, 2019]

  • Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522882/ [Accessed January 3, 2019]

  • Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain, Behavior, and Immunity 27:22–32

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M (2010) Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab 30:1288–1295

    Article  PubMed  PubMed Central  Google Scholar 

  • McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, Gladue RP, Neote KS, Willenborg DO (2004) Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Laboratory Investigation 84:1418–1429

    Article  CAS  PubMed  Google Scholar 

  • Medalla M, Luebke JI (2015) Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci 35:112–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore TL, Bowley BGE, Pessina MA, Calderazzo SM, Medalla M, Go V, Zhang ZG, Chopp M, Finklestein S, Harbaugh AG, Rosene DL, Buller B (2019) Mesenchymal derived exosomes enhance recovery of motor function in a monkey model of cortical injury. Restorative Neurology and Neuroscience 37:347–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orczykowski ME, Calderazzo SM, Shobin E, Pessina MA, Oblak AL, Finklestein SP, Kramer BC, Mortazavi F, Rosene DL, Moore TL (2019) Cell based therapy reduces secondary damage and increases extent of microglial activation following cortical injury. Brain Research 1717:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665

    Article  CAS  PubMed  Google Scholar 

  • Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. International journal of physiology, pathophysiology and pharmacology 5:73–90

    PubMed  PubMed Central  Google Scholar 

  • Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Ehlenberger DB, Hof PR, Wearne SL (2006) Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nat Protoc 1:2152–2161

    Article  CAS  PubMed  Google Scholar 

  • Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    Article  CAS  PubMed  Google Scholar 

  • Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME, Eldridge SA, Calderazzo SM, Mortazavi F, Moore TL, Rosene DL (2017) Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. GeroScience 39:199–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Tigges J, Gordon TP, McClure HM, Hall EC, Peters A (1988) Survival rate and life span of rhesus monkeys at the Yerkes regional primate research center. American Journal of Primatology 15:263–273

    Article  PubMed  Google Scholar 

  • Villeda SA et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7 Available at: https://www.frontiersin.org/articles/10.3389/fnagi.2015.00124/full [Accessed August 19, 2019]

  • Wake H, Moorhouse AJ, Nabekura J (2011) Functions of microglia in the central nervous system – beyond the immune response. Neuron Glia Biology 7:47–53

    Article  PubMed  Google Scholar 

  • Walberer M, Jantzen SU, Backes H, Rueger MA, Keuters MH, Neumaier B, Hoehn M, Fink GR, Graf R, Schroeter M (2014) In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats. Brain Research 1581:80–88

    Article  CAS  PubMed  Google Scholar 

  • Williams AM, Dennahy IS, Bhatti UF, Halaweish I, Xiong Y, Chang P, Nikolian VC, Chtraklin K, Brown J, Zhang Y, Zhang ZG, Chopp M, Buller B, Alam HB (2019) Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J Neurotrauma 36:54–60

    Article  PubMed  Google Scholar 

  • Wright KT, Masri WE, Osman A, Chowdhury J, Johnson WEB (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29:169–178

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2017) Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 12:19–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2018) Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology 21:137–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ye Y, Su X, He J, Bai W, He X (2017) MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci 11 Available at: https://www.frontiersin.org/articles/10.3389/fncel.2017.00055/full [Accessed June 11, 2018]

  • Zhang ZG, Chopp M (2016) Exosomes in stroke pathogenesis and therapy. J Clin Invest 126:1190–1197

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, & Xiong Ye (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. Journal of Neurosurgery JNS 122(4):856–867. Retrieved Oct 26, 2019, from https://thejns.org/view/journals/j-neurosurg/122/4/article-p856.xml

  • Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International 111:69–81

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, He X, Ren Y (2014) Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res 9:1787–1795

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our staff, Penny Schultz and Karen Slater, and graduate students, Karen Bottenfield, Katelyn Trecartin, Samantha Calderazzo, and Ajay Uprety, for their invaluable assistance with this study.

Funding

This work was supported by the NIH grants R21-NS102991, R21NS111174, and U01-NS076474 and the National Center for Advancing Translational Sciences, National Institutes of Health, through BU-CTSI Grant Number 1UL1TR001430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Go.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, V., Bowley, B.G.E., Pessina, M.A. et al. Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys. GeroScience 42, 1–17 (2020). https://doi.org/10.1007/s11357-019-00115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-019-00115-w

Keywords

Navigation