Abstract
Aging is a major risk factor for vascular cognitive impairment and dementia (VCID). Recent studies demonstrate that cerebromicrovascular dysfunction plays a causal role in the development of age-related cognitive impairment, in part via disruption of neurovascular coupling (NVC) responses. NVC (functional hyperemia) is responsible for adjusting cerebral blood flow to the increased energetic demands of activated neurons, and in preclinical animal models of aging, pharmacological restoration of NVC is associated with improved cognitive performance. To translate these findings, there is an increasing need to develop novel and sensitive tools to assess cerebromicrovascular function and NVC to assess risk for VCID and evaluate treatment efficacy. Due to shared developmental origins, anatomical features, and physiology, assessment of retinal vessel function may serve as an important surrogate outcome measure to study neurovascular dysfunction. The present study was designed to compare NVC responses in young (< 45 years of age; n = 18) and aged (> 65 years of age; n = 11) healthy human subjects by assessing flicker light-induced changes in the diameter of retinal arterioles using a dynamic vessel analyzer (DVA)-based approach. We found that NVC responses in retinal arterioles were significantly decreased in older adults as compared with younger subjects. We propose that the DVA-based approach can be used to assess NVC, as a surrogate cerebromicrovascular outcome measure, to evaluate the effects of therapeutic interventions in older individuals.
Similar content being viewed by others
References
Albanna W, Kotliar K, Lüke JN, Alpdogan S, Conzen C, Lindauer U, Clusmann H, Hescheler J, Vilser W, Schneider T, Schubert GA (2018) Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis. PLoS One 13:e0204689. https://doi.org/10.1371/journal.pone.0204689
Ames A 3rd, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12:840–853
Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. GeroScience 39:129–145. https://doi.org/10.1007/s11357-017-9971-0
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. https://doi.org/10.1038/nature09613
Balbi M, Ghosh M, Longden TA, Vega MJ, Gesierich B, Hellal F, Lourbopoulos A, Nelson MT, Plesnila N (2015) Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 35:1445–1453. https://doi.org/10.1038/jcbfm.2015.107
Carlson BW, Craft MA, Carlson JR, Razaq W, Deardeuff KK, Benbrook DM (2018) Accelerated vascular aging and persistent cognitive impairment in older female breast cancer survivors. Geroscience 40:325–336. https://doi.org/10.1007/s11357-018-0025-z
Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787. https://doi.org/10.1161/JAHA.114.000787e000787
Csipo T, Fulop GA, Lipecz A, Tarantini S, Kiss T, Balasubramanian P, Csiszar A, Ungvari Z, Yabluchanskiy A (2018) Short-term weight loss reverses obesity-induced microvascular endothelial dysfunction. GeroScience 40:337–346. https://doi.org/10.1007/s11357-018-0028-9
Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer’s disease. GeroScience 39:359–372. https://doi.org/10.1007/s11357-017-9991-9
de Jong FJ, Schrijvers EMC, Ikram MK, Koudstaal PJ, de Jong PTVM, Hofman A, Vingerling JR, Breteler MMB (2011) Retinal vascular caliber and risk of dementia: the Rotterdam study. Neurology 76:816–821. https://doi.org/10.1212/WNL.0b013e31820e7baa
Duarte JV, Pereira JMS, Quendera B, Raimundo M, Moreno C, Gomes L, Carrilho F, Castelo-Branco M (2015) Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study. J Cereb Blood Flow Metab 35:1671–1680. https://doi.org/10.1038/jcbfm.2015.106
Enager P, Piilgaard H, Offenhauser N, Kocharyan A, Fernandes P, Hamel E, Lauritzen M (2009) Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J Cereb Blood Flow Metab 29:976–986. https://doi.org/10.1038/jcbfm.2009.23
Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, McAuley E, Sutton BP, Kramer AF, Gratton G (2013) Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85:592–607. https://doi.org/10.1016/j.neuroimage.2013.04.113
Falsini B, Riva CE, Logean E (2002) Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest Ophthalmol Vis Sci 43:2309–2316
Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A (2018) Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. GeroScience 40:513–521. https://doi.org/10.1007/s11357-018-0047-6
Garhofer G, Bek T, Boehm AG, Gherghel D, Grunwald J, Jeppesen P, Kergoat H, Kotliar K, Lanzl I, Lovasik JV, Nagel E, Vilser W, Orgul S, Schmetterer L (2010) Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol 88:717–722. https://doi.org/10.1111/j.1755-3768.2009.01587.x
Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR (2014) Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 592:2549–2561. https://doi.org/10.1113/jphysiol.2013.268680
Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 100:328–335. https://doi.org/10.1152/japplphysiol.00966.2005
Gugleta K, Zawinka C, Rickenbacher I, Kochkorov A, Katamay R, Flammer J, Orgul S (2006) Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 47:4034–4041. https://doi.org/10.1167/iovs.06-0351
Hammer M, Vilser W, Riemer T, Liemt F, Jentsch S, Dawczynski J, Schweitzer D (2011) Retinal venous oxygen saturation increases by flicker light stimulation. Invest Ophthalmol Vis Sci 52:274–277. https://doi.org/10.1167/iovs.10-5537
Heitmar R, Kalitzeos AA, Patel SR, Prabhu-Das D, Cubbidge RP (2015) Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography. J Optom 8:252–257. https://doi.org/10.1016/j.optom.2014.07.002
Huneau C, Benali H, Chabriat H (2015) Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models. Front Neurosci 9:467. https://doi.org/10.3389/fnins.2015.00467
Huppert TJ, Jones PB, Devor A, Dunn AK, Teng IC, Dale AM, Boas DA (2009) Sensitivity of neural-hemodynamic coupling to alterations in cerebral blood flow during hypercapnia. J Biomed Opt 14:044038. https://doi.org/10.1117/1.3210779
Kneser M, Kohlmann T, Pokorny J, Tost F (2009) Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis. Med Sci Monit 15:CR436–CR441
Kotliar KE, Lanzl IM, Schmidt-Trucksäss A, Sitnikova D, Ali M, Blume K, Halle M, Hanssen H (2011) Dynamic retinal vessel response to flicker in obesity: a methodological approach. Microvasc Res 81:123–128. https://doi.org/10.1016/j.mvr.2010.11.007
Lasta M, Pemp B, Schmidl D, Boltz A, Kaya S, Palkovits S, Werkmeister R, Howorka K, Popa-Cherecheanu A, Garhöfer G, Schmetterer L (2013) Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Invest Ophthalmol Vis Sci 54:842–847. https://doi.org/10.1167/iovs.12-10873
Lee HJ, Feliers D, Barnes JL, Oh S, Choudhury GG, Diaz V, Galvan V, Strong R, Nelson J, Salmon A, Kevil CG, Kasinath BS (2018) Hydrogen sulfide ameliorates aging-associated changes in the kidney. Geroscience 40:163–176. https://doi.org/10.1007/s11357-018-0018-y
Lim M, Sasongko MB, Ikram MK, Lamoureux E, Wang JJ, Wong TY, Cheung CY (2013) Systemic associations of dynamic retinal vessel analysis: a review of current literature. Microcirculation 20:257–268. https://doi.org/10.1111/micc.12026
Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512 ( Pt 2:555–566
McGrory S, Cameron JR, Pellegrini E, Warren C, Doubal FN, Deary IJ, Dhillon B, Wardlaw JM, Trucco E, MacGillivray TJ (2017) The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimers Dement (Amst) 6:91–107. https://doi.org/10.1016/j.dadm.2016.11.001
Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870. https://doi.org/10.1523/JNEUROSCI.4048-05.2006
Metea MR, Newman EA (2007) Signalling within the neurovascular unit in the mammalian retina. Exp Physiol 92:635–640. https://doi.org/10.1113/expphysiol.2006.036376
Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM (2012) Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 60:2127–2136. https://doi.org/10.1111/j.1532-5415.2012.04209.x
Nacarelli T, Azar A, Altinok O, Orynbayeva Z, Sell C (2018) Rapamycin increases oxidative metabolism and enhances metabolic flexibility in human cardiac fibroblasts. Geroscience 40:243–256. https://doi.org/10.1007/s11357-018-0030-2
Nagel E, Vilser W, Lanzl I (2004) Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response. Invest Ophthalmol Vis Sci 45:1486–1492
Newman EA (2013) Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 33:1685–1695. https://doi.org/10.1038/jcbfm.2013.145
Noonan JE, Lamoureux EL, Sarossy M (2015) Neuronal activity-dependent regulation of retinal blood flow. Clin Exp Ophthalmol 43:673–682. https://doi.org/10.1111/ceo.12530
Oomen CA, Farkas E, Roman V, van der Beek EM, Luiten PG, Meerlo P (2009) Resveratrol preserves cerebrovascular density and cognitive function in aging mice. Front Aging Neurosci 1:4. https://doi.org/10.3389/neuro.24.004.2009
Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918. https://doi.org/10.1038/sj.jcbfm.9600491
Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168
Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797. https://doi.org/10.1016/j.neuron.2011.08.009
Piche M, Paquette T, Leblond H (2017) Tight neurovascular coupling in the spinal cord during nociceptive stimulation in intact and spinal rats. Neuroscience 355:1–8. https://doi.org/10.1016/j.neuroscience.2017.04.038
Polak K, Dorner G, Kiss B, Polska E, Findl O, Rainer G, Eichler HG, Schmetterer L (2000) Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol 84:1285–1290
Querques G, Borrelli E, Sacconi R, de Vitis L, Leocani L, Santangelo R, Magnani G, Comi G, Bandello F (2019) Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep 9:63. https://doi.org/10.1038/s41598-018-37271-6
Ravi Teja KV, Tos Berendschot T, Steinbusch H, Carroll Webers AB, Praveen Murthy R, Mathuranath PS (2017) Cerebral and retinal neurovascular changes: a biomarker for Alzheimer’s disease. J Gerontol Geriatr Res 6. https://doi.org/10.4172/2167-7182.1000447
Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24:183–215. https://doi.org/10.1016/j.preteyeres.2004.07.002
Sarker MR, Franks SF (2018) Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 40:73–95. https://doi.org/10.1007/s11357-018-0017-z
Scerbak C, Vayndorf E, Hernandez A, McGill C, Taylor B (2018) Lowbush cranberry acts through DAF-16/FOXO signaling to promote increased lifespan and axon branching in aging posterior touch receptor neurons. GeroScience 40:151–162. https://doi.org/10.1007/s11357-018-0016-0
Seshadri S, Ekart A, Gherghel D (2016) Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals. Acta Ophthalmol 94:e35–e42. https://doi.org/10.1111/aos.12786
Shakoor A, Blair NP, Mori M, Shahidi M (2006) Chorioretinal vascular oxygen tension changes in response to light flicker. Invest Ophthalmol Vis Sci 47:4962–4965. https://doi.org/10.1167/iovs.06-0291
Sorond FA, Schnyer DM, Serrador JM, Milberg WP, Lipsitz LA (2008) Cerebral blood flow regulation during cognitive tasks: effects of healthy aging. Cortex 44:179–184. https://doi.org/10.1016/j.cortex.2006.01.003
Sorond FA, Galica A, Serrador JM, Kiely DK, Iloputaife I, Cupples LA, Lipsitz LA (2010) Cerebrovascular hemodynamics, gait, and falls in an elderly population: MOBILIZE Boston study. Neurology 74:1627–1633. https://doi.org/10.1212/WNL.0b013e3181df0982
Sorond FA, Kiely DK, Galica A, Moscufo N, Serrador JM, Iloputaife I, Egorova S, Dell'Oglio E, Meier DS, Newton E, Milberg WP, Guttmann CRG, Lipsitz LA (2011) Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston study. Ann Neurol 70:213–220. https://doi.org/10.1002/ana.22433
Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND (2013) Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81:904–909. https://doi.org/10.1212/WNL.0b013e3182a351aa
Stobart JL, Lu L, Anderson HD, Mori H, Anderson CM (2013) Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 110:3149–3154. https://doi.org/10.1073/pnas.1215929110
Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881. https://doi.org/10.1038/jcbfm.2015.162
Tarantini S, Fulop GA, Kiss T, Farkas E, Zölei-Szénási D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017a) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience 39:465–473. https://doi.org/10.1007/s11357-017-9980-z
Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A (2017b) Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol 94:52–58. https://doi.org/10.1016/j.exger.2016.11.004
Tarantini S, Yabluchanksiy A, Fülöp GA, Hertelendy P, Valcarcel-Ares MN, Kiss T, Bagwell JM, O’Connor D, Farkas E, Sorond F, Csiszar A, Ungvari Z (2017c) Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. GeroScience 39:601–614. https://doi.org/10.1007/s11357-017-0003-x
Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Fulop GA, Hertelendy P, Gautam T, Farkas E, Perz A, Rabinovitch PS, Sonntag WE, Csiszar A, Ungvari Z (2018) Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17:e12731. https://doi.org/10.1111/acel.12731
Tong XK, Lecrux C, Rosa-Neto P, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32:4705–4715. https://doi.org/10.1523/JNEUROSCI.0169-12.2012
Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) Resveratrol treatment rescues neurovascular coupling in aged mice:role of improved cerebromicrovascular endothelial function and down-regulation of NADPH oxidas. Am J Physiol Heart Circ Physiol 306:H299–H308. https://doi.org/10.1152/ajpheart.00744.2013
Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z (2015a) IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034–1044. https://doi.org/10.1111/acel.12372
Toth P, Tarantini S, Davila A, Valcarcel-Ares MN, Tucsek Z, Varamini B, Ballabh P, Sonntag WE, Baur JA, Csiszar A, Ungvari Z (2015b) Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 309:H1837–H1845. https://doi.org/10.1152/ajpheart.00463.2015
Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, Giles CB, Wren JD, Koller A, Ballabh P, Sonntag WE, Ungvari Z, Csiszar A (2014) Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 69:1339–1352. https://doi.org/10.1093/gerona/glu080
Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. GeroScience 39:33–42. https://doi.org/10.1007/s11357-017-9964-z
Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A (2018) Mechanisms of vascular aging. Circ Res 123:849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378
Wells JA, Christie IN, Hosford PS, Huckstepp RTR, Angelova PR, Vihko P, Cork SC, Abramov AY, Teschemacher AG, Kasparov S, Lythgoe MF, Gourine AV (2015) A critical role for purinergic signalling in the mechanisms underlying generation of BOLD fMRI responses. J Neurosci 35:5284–5292. https://doi.org/10.1523/JNEUROSCI.3787-14.2015
West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, Spence JS, Rypma B (2018) BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 188:198–207. https://doi.org/10.1016/j.neuroimage.2018.12.012
Zaletel M, Strucl M, Pretnar-Oblak J, Zvan B (2005) Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Funct Neurol 20:115–120
Funding
This work was supported by grants from the American Heart Association (ST), the Oklahoma Center for the Advancement of Science and Technology (to AY, ZU), the National Institute on Aging (R01-AG055395, R01-AG047879; R01-AG038747), the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS100782, R01-NS056218), the Oklahoma Shared Clinical and Translational Resources (OSCTR) program funded by the National Institute of General Medical Sciences (U54GM104938, to AY), and the Presbyterian Health Foundation (to ZU, AY, AC). The authors acknowledge the support from the NIA/NIH-funded Geroscience Training Program in Oklahoma (T32AG052363) and the Cellular and Molecular GeroScience CoBRE (1P20GM125528, sub#5337).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Protocols were approved by the Institutional Review Board.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Lipecz, A., Csipo, T., Tarantini, S. et al. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. GeroScience 41, 341–349 (2019). https://doi.org/10.1007/s11357-019-00078-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11357-019-00078-y