, Volume 40, Issue 3, pp 293–303 | Cite as

Factors that positively or negatively mediate the effects of age on working memory across the adult life span

  • Selene CansinoEmail author
  • Frine Torres-Trejo
  • Cinthya Estrada-Manilla
  • Joyce Graciela Martínez-Galindo
  • Evelia Hernández-Ramos
  • Mariana Ayala-Hernández
  • Tania Gómez-Fernández
  • María Dolores Ramírez-González
  • Silvia Ruiz-Velasco
Original Article


Working memory abilities significantly decrease with advancing age; hence, the search for factors that may increase or mitigate this decline is critical. Several factors have been identified that influence working memory; however, their effects have been mainly assessed separately and rarely together with other factors in the same sample. We examined 120 variables to search for factors that jointly act as mediators of working memory decay across the adult life span. A sample of 1652 healthy adults was assessed in spatial and verbal working memory domains. Structural equation modeling analyses were conducted to search for potential mediators that intervened between age and working memory. Only 14 and 10 variables reliably mediated spatial and verbal working memory, respectively. Factors from several domains remained in the models, such as individual characteristics, physiological traits, consumption habits, and regular activities. These factors are sufficiently powerful to influence working memory decline when they jointly interact, as in everyday living.


Spatial working memory Verbal working memory Mediators Adult life span Structural equation modeling 


Funding information

This work was supported by the National Council of Science and Technology (CONACYT) (grant number 238826) and the National Autonomous University of Mexico, General Direction of Academic personal Affairs (DGAPA) (grant numbers IN304202, IN300206, IN300309, ID300312, IG300115, IG300618).

Compliance with ethical standards

All participants provided informed consent and received a monetary reward for his/her participation. The study was approved by the Bioethics Committee of the School of Medicine at the National Autonomous University of Mexico. All experiments were performed in accordance with the Declaration of Helsinki.

Supplementary material

11357_2018_31_MOESM1_ESM.docx (114 kb)
ESM 1 (DOCX 114 kb)


  1. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321. CrossRefPubMedGoogle Scholar
  2. Beck AT (1987) Beck depression inventory. The Psychological Corporation, San AntonioGoogle Scholar
  3. Beilharz JE, Maniam J, Morris MJ (2015) Diet-induced cognitive deficits: the role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients 7:6719–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Black JE, Greenough WT, Anderson BJ, Isaacs KR (1987) Environment and the aging brain. Can J Psychol 41:111–130PubMedGoogle Scholar
  5. Brenner H, Rothenbacher D, Bode G, März W, Hoffmeister A, Koenig W (2001) Coronary heart disease risk reduction in a predominantly beer-drinking population. Epidemiology 12:390–395. CrossRefPubMedGoogle Scholar
  6. Britton A, Singh-Manoux A, Marmot M (2004) Alcohol consumption and cognitive function in the Whitehall II Study. Am J Epidemiol 160:240–247. CrossRefPubMedGoogle Scholar
  7. Cansino S, Hernández-Ramos E, Estrada-Manilla C, Torres-Trejo F, Martínez-Galindo JG, Ayala-Hernández M, Gómez-Fernández T, Osorio D, Cedillo-Tinoco M, Garcés-Flores L, Beltrán-Palacios K, García-Lázaro HG, García-Gutiérrez F, Cadena-Arenas Y, Fernández-Apan L, Bärtschi A, Rodríguez-Ortiz MD (2013) The decline of verbal and visuospatial working memory across the adult life span. AGE 35:2283–2302. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chávez MM, Chávez A, Pérez-Gil F, Roldán JA, Ledesma JA, Mendoza E, Hernández SL, Chaparro AG (1996) Tablas de Valor Nutritivo de los Alimentos de Mayor Consumo en México. Edición Internacional Español-Inglés, Pax MéxicoGoogle Scholar
  9. Dixon RA, Hultsch DF, Hertzog C (1988) The Metamemory in Adulthood (MIA) questionnaire. Psychopharmacol Bull 24:671–688PubMedGoogle Scholar
  10. dos Santos Coura R, Granon S (2012) Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology 221:1–18. CrossRefPubMedGoogle Scholar
  11. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 27:260–268. CrossRefPubMedGoogle Scholar
  12. Filip S, Fink R, Hribar J, Vidrih R (2010) Trans fatty acids in food and their influence on human health. Food Technol Biotechnol 48:135–142 Google Scholar
  13. Flavell JH (1979) Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am Psychol 34:906–911. CrossRefGoogle Scholar
  14. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. J Psychiatr Res 12:189–198. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fraser T, Tayler H, Love S (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem Res 35:503–513. CrossRefPubMedGoogle Scholar
  16. Fratiglioni L, Paillard-Borg S, Winblad B (2004) An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 3:343–353. CrossRefPubMedGoogle Scholar
  17. Grande F, Anderson JT, Keys A (1970) Comparison of effects of palmitic and stearic acids in the diet on serum cholesterol in man. Am J Clin Nutr 23:1184–1193CrossRefPubMedGoogle Scholar
  18. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Grieve S, Gordon E (2008) Relationship between body mass index and brain volume in healthy adults. Int J Neurosci 118:1582–1593. CrossRefPubMedGoogle Scholar
  19. Hansson JA, Hagber B (2005) Determinant factors contributing to variations in memory performance in centenarians. Int J Aging Hum Dev 60:19–51. CrossRefPubMedGoogle Scholar
  20. Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hernández M, Aguirre J, Serrano L (1983) Alimentación de obreros y sus familias. División de Nutrición de Comunidades, Publicación L-61. Instituto Nacional de la Nutrición “Salvador Zubirán”, MexicoGoogle Scholar
  22. Hernández-Ávila M, Romieu I, Parra S, Hernández-Ávila J, Madrigal H, Willett W (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 39:133–140CrossRefGoogle Scholar
  23. Hernández-Ávila JE, González-Aviles L, Rosales-Mendoza E (2000) Manual de usuario. SNUT Sistema de evaluación de hábitos nutricionales y consumo de nutrimentos. Instituto Nacional de Salud Pública, CuernavacaGoogle Scholar
  24. Holmes TH, Rahe RH (1967) The social readjustment rating scale. J Psychosom Res 11:213–318CrossRefPubMedGoogle Scholar
  25. Imhof A, Woodward M, Doering A, Helbecque N, Loewel H, Amouyel P, Lowe GD, Koenig W (2004) Overall alcohol intake, beer, wine, and systemic markers of inflammation in western Europe: results from three MONICA samples (Augsburg, Glasgow, Lille). Eur Heart J 25:2092–2100. CrossRefPubMedGoogle Scholar
  26. Kalev-Zylinska ML, During MJ (2007) Paradoxical facilitatory effect of low-dose alcohol consumption on memory mediated by NMDA receptors. J Neurosci 27:10456–10467. CrossRefPubMedGoogle Scholar
  27. Kaplan RJ, Greenwood CE (1998) Dietary saturated fatty acids and brain function. Neurochem Res 23:615–626. CrossRefPubMedGoogle Scholar
  28. Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55:352–358. CrossRefPubMedGoogle Scholar
  29. MacCallum RC, Browne MW, Sugawara HM (1996) Power analysis and determination of sample size for covariance structure modeling. Psychol Methods 1:130–149. CrossRefGoogle Scholar
  30. Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Holt, Rinehart & Winston, New YorkCrossRefGoogle Scholar
  31. Preacher KJ, Coffman DL (2006) Computing power and minimum sample size for RMSEA [Computer software]. Retrieved from
  32. Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891. CrossRefPubMedGoogle Scholar
  33. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319:1523–1528. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Romieu I, Parra S, Hernández JF, Madrigal H, Willet W, Hernández M (1999) Questionnaire assessment of antioxidants and retinol intakes in Mexican women. Arch Med Res 30:224–239. CrossRefPubMedGoogle Scholar
  35. Ruitenberg A, van Swieten JC, Witteman JC, Mehta KM, van Duijn CM, Hofman A, Breteler MM (2002) Alcohol consumption and risk of dementia: the Rotterdam Study. Lancet 359:281–286. CrossRefPubMedGoogle Scholar
  36. Santos NC, Costa PS, Cunha P, Portugal-Nunes C, Amorim L, Cotter J, Cerqueira JJ, Palha JA, Sousa N (2014) Clinical, physical and lifestyle variables and relationship with cognition and mood in aging: a cross-sectional analysis of distinct educational groups. Front Aging Neurosci 6:21. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028. CrossRefPubMedPubMedCentralGoogle Scholar
  38. US Department of Agriculture (1963–1997) Composition of foods—raw, processed, and prepared. Agricultural handbook no. 8. Government Printing Offices, Washington, D.CGoogle Scholar
  39. Wechsler D (1981) WAIS-R manual. The Psychological Corporation, New YorkGoogle Scholar
  40. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65. CrossRefPubMedGoogle Scholar
  41. Zahodne LB, Glymour MM, Sparks C, Bontempo D, Dixon RA, MacDonald SW, Manly JJ (2011) Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. J Int Neuropsychol Soc 17:1039–1146. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2018

Authors and Affiliations

  • Selene Cansino
    • 1
    Email author
  • Frine Torres-Trejo
    • 1
  • Cinthya Estrada-Manilla
    • 1
  • Joyce Graciela Martínez-Galindo
    • 1
  • Evelia Hernández-Ramos
    • 1
  • Mariana Ayala-Hernández
    • 1
  • Tania Gómez-Fernández
    • 1
  • María Dolores Ramírez-González
    • 2
  • Silvia Ruiz-Velasco
    • 3
  1. 1.Laboratory of NeuroCognition, Faculty of PsychologyNational Autonomous University of MexicoMexico CityMexico
  2. 2.Department of Pharmacology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
  3. 3.Department of Probability and Statistics, Applied Mathematics and Systems Research InstituteNational Autonomous University of MexicoMexico CityMexico

Personalised recommendations