Advertisement

GeroScience

pp 1–10 | Cite as

Short-term weight loss reverses obesity-induced microvascular endothelial dysfunction

  • Tamas Csipo
  • Gabor A. Fulop
  • Agnes Lipecz
  • Stefano Tarantini
  • Tamas Kiss
  • Priya Balasubramanian
  • Anna Csiszar
  • Zoltan Ungvari
  • Andriy Yabluchanskiy
Original Article

Abstract

Obesity is one of the major risk factors for cardiovascular diseases and its prevalence is increasing in all age groups, with the biggest impact observed in middle-aged and older adults. A critical mechanism by which obesity promotes vascular pathologies in these patients involves impairment of endothelial function. While endothelial dysfunction in large vessels promotes atherogenesis, obesity-induced microvascular endothelial dysfunction impairs organ perfusion and thereby is causally related to the pathogenesis of ischemic heart disease, chronic kidney disease, intermittent claudication, exercise intolerance, and exacerbates cognitive decline in aging. Reduction of weight via calorie-based diet and exercise in animal models of obesity results in significant improvement of endothelial function both in large vessels and in the microcirculation, primarily due to attenuation of oxidative stress and inflammation. Clinical data on the protective effects of weight loss on endothelial function is limited to studies of flow-mediated dilation assessed in brachial arteries. Currently, there is no guideline on testing the effects of different weight management strategies on microvascular endothelial function in obese patients. Here, we provide proof-of-concept that weight loss-induced improvement of microvascular endothelial function can be reliably assessed in the setting of a geriatric outpatient clinic using a fast, reproducible, non-invasive method: laser speckle contrast imaging-based measurement of endothelium-dependent microvascular responses during post-occlusive reactive hyperemia tests. Our study also provides initial evidence that short-term weight loss induced by consumption of a low-carbohydrate low-calorie diet can reverse microvascular endothelial dysfunction associated with obesity.

Keywords

Weight loss Obesity Endothelial function Aging 

Notes

Funding information

This work was supported by the National Institutes of Health (NIH) Grants R01-AT-006526, R01-AG047879, R01-AG038747, and R01-NS056218, the Geroscience Training Program in Oklahoma (NIH Grant T32-AG-052363), the Oklahoma Nathan Shock Center (NIH Grant 3-P30-AG050911-02S1), the Oklahoma Shared Clinical and Translational Resources (NIH Grant U54-GM-104938), the Oklahoma Center for the Advancement of Science and Technology (HR17-070), the College of Medicine Alumni Association, the Presbyterian Health Foundation, and the EU-funded grant EFOP-3.6.1-16-2016-00008. The paper was published as part of the “Translational Geroscience” initiative of the Journal of the American Aging Association (Ashpole et al. 2017; Bennis et al. 2017; Callisaya et al. 2017; Csiszar et al. 2017; Deepa et al. 2017; Grimmig et al. 2017; Hancock et al. 2017; Kane et al. 2017; Kim et al. 2017; Konopka et al. 2017; Liu et al. 2017; Meschiari et al. 2017; Perrott et al. 2017; Podlutsky et al. 2017; Shobin et al. 2017; Sierra and Kohanski 2017; Tarantini et al. 2017a; Tarantini et al. 2017b; Tenk et al. 2017; Tucsek et al. 2017; Ungvari et al. 2017a, b ; Urfer et al. 2017a, b).

References

  1. Abdelaal M, le Roux CW, Docherty NG (2017) Morbidity and mortality associated with obesity. Ann Transl Med 5:161.  https://doi.org/10.21037/atm.2017.03.107 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alosco ML, Spitznagel MB, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, van Dulmen M, Hughes J, Rosneck J, Gunstad J (2012) Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra 2:88–98.  https://doi.org/10.1159/000343222 CrossRefPubMedPubMedCentralGoogle Scholar
  3. American College of Cardiology/American Heart Association Task Force on Practice Guidelines OEP (2014) Executive summary: guidelines (2013) for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society published by the Obesity Society and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Based on a systematic review from the The Obesity Expert Panel, 2013 Obesity (Silver Spring) 22 Suppl 2:S5–39.  https://doi.org/10.1002/oby.20821
  4. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129–145.  https://doi.org/10.1007/s11357-017-9971-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bailey-Downs LC, Tucsek Z, Toth P, Sosnowska D, Gautam T, Sonntag WE, Csiszar A, Ungvari Z (2013) Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci 68:780–792.  https://doi.org/10.1093/gerona/gls238 CrossRefPubMedGoogle Scholar
  6. Barcelos A, Lamas C, Tibirica E (2017) Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study. BMC Res Notes 10:342.  https://doi.org/10.1186/s13104-017-2660-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, Gesing A, Kopchick JJ, Siddiqi SA, Masternak MM (2017) The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience 39:51–59.  https://doi.org/10.1007/s11357-017-9957-y CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bernier M, Wahl D, Ali A, Allard J, Faulkner S, Wnorowski A, Sanghvi M, Moaddel R, Alfaras I, Mattison J, Tarantini S, Tucsek Z, Ungvari Z, Csiszar A, Pearson K, de Cabo R (2016) Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging (Albany NY) 8:899–916.  https://doi.org/10.18632/aging.100942 CrossRefGoogle Scholar
  10. Bigornia SJ, Mott MM, Hess DT, Apovian CM, McDonnell ME, Duess MA, Kluge MA, Fiscale AJ, Vita JA, Gokce N (2010) Long-term successful weight loss improves vascular endothelial function in severely obese individuals. Obesity (Silver Spring) 18:754–759.  https://doi.org/10.1038/oby.2009.482 CrossRefGoogle Scholar
  11. Callisaya ML, Launay CP, Srikanth VK, Verghese J, Allali G, Beauchet O (2017) Cognitive status, fast walking speed and walking speed reserve-the gait and Alzheimer interactions tracking (GAIT) study. Geroscience 39:231–239.  https://doi.org/10.1007/s11357-017-9973-y CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cordovil I, Huguenin G, Rosa G, Bello A, Kohler O, de Moraes R, Tibirica E (2012) Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvasc Res 83:376–379.  https://doi.org/10.1016/j.mvr.2012.01.004 CrossRefPubMedGoogle Scholar
  13. Cotie LM, Josse AR, Phillips SM, MacDonald MJ (2014) Endothelial function increases after a 16-week diet and exercise intervention in overweight and obese young women. Biomed Res Int 2014:327395.  https://doi.org/10.1155/2014/327395 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer’s disease. Geroscience 39:359–372.  https://doi.org/10.1007/s11357-017-9991-9 CrossRefPubMedCentralGoogle Scholar
  15. Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, van Remmen H, Richardson A (2017) A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. Geroscience 39:187–198.  https://doi.org/10.1007/s11357-017-9975-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F (2007) High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 116:1488–1496.  https://doi.org/10.1161/CIRCULATIONAHA.106.683243 CrossRefPubMedGoogle Scholar
  17. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 27:260–268.  https://doi.org/10.1038/sj.ijo.802225 CrossRefPubMedGoogle Scholar
  18. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB (2005) Obesity, diabetes and cognitive deficit: the Framingham heart study. Neurobiol Aging 26(Suppl 1):11–16.  https://doi.org/10.1016/j.neurobiolaging.2005.08.019 CrossRefPubMedGoogle Scholar
  19. Elmarakby AA, Imig JD (2010) Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. Clin Sci (Lond) 118:291–301.  https://doi.org/10.1042/CS20090395 CrossRefGoogle Scholar
  20. Erdei N, Toth A, Pasztor ET, Papp Z, Edes I, Koller A, Bagi Z (2006) High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion. Am J Physiol Heart Circ Physiol 291:H2107–H2115.  https://doi.org/10.1152/ajpheart.00389.2006 CrossRefPubMedGoogle Scholar
  21. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497.  https://doi.org/10.1001/jama.2012.39 CrossRefPubMedGoogle Scholar
  22. Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, Chade AR, Lerman LO, Lerman A (2007) Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol 292:H904–H911.  https://doi.org/10.1152/ajpheart.00628.2006 CrossRefPubMedGoogle Scholar
  23. Grassi G, Seravalle G, Scopelliti F, Dell'Oro R, Fattori L, Quarti-Trevano F, Brambilla G, Schiffrin EL, Mancia G (2010) Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity (Silver Spring) 18:92–98.  https://doi.org/10.1038/oby.2009.195 CrossRefGoogle Scholar
  24. Grimmig B, Kim SH, Nash K, Bickford PC, Douglas Shytle R (2017) Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience 39:19–32.  https://doi.org/10.1007/s11357-017-9958-x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hancock SE, Friedrich MG, Mitchell TW, Truscott RJ, Else PL (2017) The phospholipid composition of the human entorhinal cortex remains relatively stable over 80 years of adult aging. Geroscience 39:73–82.  https://doi.org/10.1007/s11357-017-9961-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Henderson KK, Turk JR, Rush JW, Laughlin MH (2004) Endothelial function in coronary arterioles from pigs with early-stage coronary disease induced by high-fat, high-cholesterol diet: effect of exercise. J Appl Physiol (1985) 97:1159–1168.  https://doi.org/10.1152/japplphysiol.00261.2004 CrossRefGoogle Scholar
  27. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation 67:968–977CrossRefPubMedGoogle Scholar
  28. Joris PJ, Zeegers MP, Mensink RP (2015) Weight loss improves fasting flow-mediated vasodilation in adults: a meta-analysis of intervention studies. Atherosclerosis 239:21–30.  https://doi.org/10.1016/j.atherosclerosis.2014.12.056 CrossRefPubMedGoogle Scholar
  29. Kane AE, Gregson E, Theou O, Rockwood K, Howlett SE (2017) The association between frailty, the metabolic syndrome, and mortality over the lifespan. Geroscience 39:221–229.  https://doi.org/10.1007/s11357-017-9967-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim CK, Kwon HM, Lee SH, Kim BJ, Ryu WS, Kwon HT, Yoon BW (2012) Association of obesity with cerebral microbleeds in neurologically asymptomatic elderly subjects. J Neurol 259:2599–2604.  https://doi.org/10.1007/s00415-012-6546-y CrossRefPubMedGoogle Scholar
  31. Kim S, Myers L, Wyckoff J, Cherry KE, Jazwinski SM (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39:83–92.  https://doi.org/10.1007/s11357-017-9960-3 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Konopka AR, Laurin JL, Musci RV, Wolff CA, Reid JJ, Biela LM, Zhang Q, Peelor FF, Melby CL, Hamilton KL, Miller BF (2017) Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults. Geroscience 39:175–186.  https://doi.org/10.1007/s11357-017-9968-8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Letra L, Sena C (2017) Cerebrovascular disease: consequences of obesity-induced endothelial dysfunction. Adv Neurobiol 19:163–189.  https://doi.org/10.1007/978-3-319-63260-5_7 CrossRefPubMedGoogle Scholar
  34. Li W, Prakash R, Chawla D, du W, Didion SP, Filosa JA, Zhang Q, Brann DW, Lima VV, Tostes RC, Ergul A (2013) Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol 304:R1001–R1008.  https://doi.org/10.1152/ajpregu.00523.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu X, Bhatt T, Wang S, Yang F, Pai YC (2017) Retention of the "first-trial effect" in gait-slip among community-living older adults. Geroscience 39:93–102.  https://doi.org/10.1007/s11357-017-9963-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, Ergul A, Faulkner JL, Faraci FM, Didion SP (2013) Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke 44:3195–3201.  https://doi.org/10.1161/STROKEAHA.113.001366 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mattison JA, Wang M, Bernier M, Zhang J, Park SS, Maudsley S, An SS, Santhanam L, Martin B, Faulkner S, Morrell C, Baur JA, Peshkin L, Sosnowska D, Csiszar A, Herbert RL, Tilmont EM, Ungvari Z, Pearson KJ, Lakatta EG, de Cabo R (2014) Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab 20:183–190.  https://doi.org/10.1016/j.cmet.2014.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mavri A, Poredos P, Suran D, Gaborit B, Juhan-Vague I, Poredos P (2011) Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting. Heart Vessel 26:31–38.  https://doi.org/10.1007/s00380-010-0016-1 CrossRefGoogle Scholar
  39. Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML (2017) The impact of aging on cardiac extracellular matrix. Geroscience 39:7–18.  https://doi.org/10.1007/s11357-017-9959-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, Abdelmohsen K, Shin YK, Canto C, Scheibye-Knudsen M, Krawczyk M, Irusta PM, Martín-Montalvo A, Hubbard BP, Zhang Y, Lehrmann E, White AA, Price NL, Swindell WR, Pearson KJ, Becker KG, Bohr VA, Gorospe M, Egan JM, Talan MI, Auwerx J, Westphal CH, Ellis JL, Ungvari Z, Vlasuk GP, Elliott PJ, Sinclair DA, de Cabo R (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1.  https://doi.org/10.1038/srep00070 http://www.nature.com/srep/2011/110818/srep00070/abs/srep00070.html#supplementary-information
  41. Miyaki A, Maeda S, Yoshizawa M, Misono M, Saito Y, Sasai H, Endo T, Nakata Y, Tanaka K, Ajisaka R (2009) Effect of weight reduction with dietary intervention on arterial distensibility and endothelial function in obese men. Angiology 60:351–357.  https://doi.org/10.1177/0003319708325449 CrossRefPubMedGoogle Scholar
  42. Mohler ER 3rd et al (2013) Endothelial function and weight loss: comparison of low-carbohydrate and low-fat diets. Obesity (Silver Spring) 21:504–509.  https://doi.org/10.1002/oby.20055 CrossRefGoogle Scholar
  43. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295:1549–1555.  https://doi.org/10.1001/jama.295.13.1549 CrossRefPubMedGoogle Scholar
  44. Ogden CL, Carroll MD, Fryar CD, Flegal KM (2015) Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief:1–8Google Scholar
  45. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427:411–412.  https://doi.org/10.1038/427411b CrossRefPubMedGoogle Scholar
  46. Park Y, Booth FW, Lee S, Laye MJ, Zhang C (2012) Physical activity opposes coronary vascular dysfunction induced during high fat feeding in mice. J Physiol 590:4255–4268.  https://doi.org/10.1113/jphysiol.2012.234856 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008a) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, Tamashiro KL, Poosala S, Csiszar A, Ungvari Z, Kensler TW, Yamamoto M, Egan JM, Longo DL, Ingram DK, Navas P, de Cabo R (2008b) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 105:2325–2330CrossRefPubMedPubMedCentralGoogle Scholar
  49. Perrott KM, Wiley CD, Desprez PY, Campisi J (2017) Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience 39:161–173.  https://doi.org/10.1007/s11357-017-9970-1 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Perticone F, Ceravolo R, Candigliota M, Ventura G, Iacopino S, Sinopoli F, Mattioli PL (2001) Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes 50:159–165CrossRefPubMedGoogle Scholar
  51. Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z (2017) The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. Geroscience 39:147–160.  https://doi.org/10.1007/s11357-017-9966-x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Romero-Corral A, Sert-Kuniyoshi FH, Sierra-Johnson J, Orban M, Gami A, Davison D, Singh P, Pusalavidyasagar S, Huyber C, Votruba S, Lopez-Jimenez F, Jensen MD, Somers VK (2010) Modest visceral fat gain causes endothelial dysfunction in healthy humans. J Am Coll Cardiol 56:662–666.  https://doi.org/10.1016/j.jacc.2010.03.063 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Roriz-Cruz M, Rosset I, Wada T, Sakagami T, Ishine M, de Sá Roriz-Filho J, Cruz TRS, Hosseinkhani M, Rodrigues RP, Sudoh S, Arai H, Wakatsuki Y, Souza AC, Nakagawa M, Kita T, Matsubayashi K (2007) Cognitive impairment and frontal-subcortical geriatric syndrome are associated with metabolic syndrome in a stroke-free population. Neurobiol Aging 28:1723–1736.  https://doi.org/10.1016/j.neurobiolaging.2006.07.013 CrossRefPubMedGoogle Scholar
  54. Rudofsky G, Roeder E, Merle T, Hildebrand M, Nawroth PP, Wolfrum C (2011) Weight loss improves endothelial function independently of ADMA reduction in severe obesity. Horm Metab Res 43:343–348.  https://doi.org/10.1055/s-0031-1271778 CrossRefPubMedGoogle Scholar
  55. Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME, Eldridge SA, Calderazzo SM, Mortazavi F, Moore TL, Rosene DL (2017) Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. Geroscience 39:199–220.  https://doi.org/10.1007/s11357-017-9965-y CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sierra F, Kohanski R (2017) Geroscience and the trans-NIH geroscience interest group. GSIG Gerosci 39:1–5.  https://doi.org/10.1007/s11357-016-9954-6 CrossRefGoogle Scholar
  57. Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D (2017) The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 113:1035–1045.  https://doi.org/10.1093/cvr/cvx093 CrossRefPubMedGoogle Scholar
  58. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610.  https://doi.org/10.1172/JCI118709 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sweazea KL, Lekic M, Walker BR (2010) Comparison of mechanisms involved in impaired vascular reactivity between high sucrose and high fat diets in rats. Nutr Metab (Lond) 7:48.  https://doi.org/10.1186/1743-7075-7-48 CrossRefGoogle Scholar
  60. Tarantini S, Fulop GA, Kiss T, Farkas E, Zölei-Szénási D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017a) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience 39:465–473.  https://doi.org/10.1007/s11357-017-9980-z CrossRefPubMedCentralGoogle Scholar
  61. Tarantini S, Yabluchanksiy A, Fülöp GA, Hertelendy P, Valcarcel-Ares MN, Kiss T, Bagwell JM, O’Connor D, Farkas E, Sorond F, Csiszar A, Ungvari Z (2017b) Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience 39:601–614.  https://doi.org/10.1007/s11357-017-0003-x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tarantini S et al. (2018) Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype J Gerontol A Biol Sci Med Sci:in pressGoogle Scholar
  63. Tenk J, Rostás I, Füredi N, Mikó A, Solymár M, Soós S, Gaszner B, Feller D, Székely M, Pétervári E, Balaskó M (2017) Age-related changes in central effects of corticotropin-releasing factor (CRF) suggest a role for this mediator in aging anorexia and cachexia. Geroscience 39:61–72.  https://doi.org/10.1007/s11357-017-9962-1 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tremmel M, Gerdtham UG, Nilsson PM, Saha S (2017) Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health 14.  https://doi.org/10.3390/ijerph14040435
  65. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, Szalai G, Sonntag WE, Ungvari Z, Csiszar A (2014a) Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 69:1212–1226.  https://doi.org/10.1093/gerona/glt177 CrossRefPubMedGoogle Scholar
  66. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, Giles CB, Wren JD, Koller A, Ballabh P, Sonntag WE, Ungvari Z, Csiszar A (2014b) Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 69:1339–1352.  https://doi.org/10.1093/gerona/glu080 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tucsek Z, Noa Valcarcel-Ares M, Tarantini S, Yabluchanskiy A, Fülöp G, Gautam T, Orock A, Csiszar A, Deak F, Ungvari Z (2017) Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. Geroscience 39:385–406.  https://doi.org/10.1007/s11357-017-9981-y CrossRefPubMedCentralGoogle Scholar
  68. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010a) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299:H18–H24CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010b) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65:1028–1041.  https://doi.org/10.1093/gerona/glq113 CrossRefPubMedGoogle Scholar
  70. Ungvari ZI, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2011) Adaptive induction of NF-E2-related Factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol 300:H1133–H1140.  https://doi.org/10.1152/ajpheart.00402.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017a) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. Geroscience 39:33–42.  https://doi.org/10.1007/s11357-017-9964-z CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ungvari Z, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Fulop GA, Kiss T, Csiszar A (2017b) Connective tissue growth factor (CTGF) in age-related vascular pathologies. Geroscience 39:491–498.  https://doi.org/10.1007/s11357-017-9995-5 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DE, Kaeberlein M (2017a) Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. Geroscience 39:43–50.  https://doi.org/10.1007/s11357-016-9956-4 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DE, Kaeberlein M (2017b) A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience 39:117–127.  https://doi.org/10.1007/s11357-017-9972-z CrossRefPubMedPubMedCentralGoogle Scholar
  75. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71:1057–1064.  https://doi.org/10.1212/01.wnl.0000306313.89165.ef CrossRefPubMedGoogle Scholar
  76. Williams IL, Chowienczyk PJ, Wheatcroft SB, Patel AG, Sherwood RA, Momin A, Shah AM, Kearney MT (2005) Endothelial function and weight loss in obese humans. Obes Surg 15:1055–1060.  https://doi.org/10.1381/0960892054621134 CrossRefPubMedGoogle Scholar
  77. Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, Toplak H, Obesity Management Task Force of the European Association for the Study of Obesity (2015) European guidelines for obesity management in adults. Obes Facts 8:402–424.  https://doi.org/10.1159/000442721 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2018

Authors and Affiliations

  • Tamas Csipo
    • 1
    • 2
  • Gabor A. Fulop
    • 1
    • 2
  • Agnes Lipecz
    • 1
    • 3
  • Stefano Tarantini
    • 1
  • Tamas Kiss
    • 1
  • Priya Balasubramanian
    • 1
  • Anna Csiszar
    • 1
    • 4
  • Zoltan Ungvari
    • 1
    • 4
    • 5
  • Andriy Yabluchanskiy
    • 1
  1. 1.Reynolds Oklahoma Center on Aging, Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Division of Clinical Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  3. 3.Department of OphthalmologyJosa Andras HospitalNyiregyhazaHungary
  4. 4.Department of Medical Physics and InformaticsUniversity of SzegedSzegedHungary
  5. 5.Department of PulmonologySemmelweis UniversityBudapestHungary

Personalised recommendations