Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies


Processes such as aberrant redox signaling and chronic low-grade systemic inflammation have been reported to modulate age-associated pathologies such as cognitive impairment. Curcumin, the primary therapeutic component of the Indian spice, Turmeric (Curcuma longa), has long been known for its strong anti-inflammatory and antioxidant activity attributable to its unique molecular structure. Recently, an interest in this polyphenol as a cognitive therapeutic for the elderly has emerged. The purpose of this paper is to critically review preclinical and clinical studies that have evaluated the efficacy of curcumin in ameliorating and preventing age-associated cognitive decline and address the translational progress of preclinical to clinical efficacy. PubMed, semantic scholar, and Google scholar searches were used for preclinical studies; and clinicaltrials.gov, the Australian and New Zealand clinical trials registry, and PubMed search were used to select relevant completed clinical studies. Results from preclinical studies consistently demonstrate curcumin and its analogues to be efficacious for various aspects of cognitive impairment and processes that contribute to age-associated cognitive impairment. Results of published clinical studies, while mixed, continue to show promise for curcumin’s use as a therapeutic for cognitive decline but overall remain inconclusive at this time. Both in vitro and in vivo studies have found that curcumin can significantly decrease oxidative stress, systemic inflammation, and obstruct pathways that activate transcription factors that augment these processes. Future clinical studies would benefit from including evaluation of peripheral and cerebrospinal fluid biomarkers of dementia and behavioral markers of cognitive decline, as well as targeting the appropriate population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2



Alzheimer’s disease


Alzheimer’s Disease Assessment Scale-cognitive subscale


Activities of daily living


Advanced glycation end products


Amyloid precursor protein


Antioxidant response elements


Amyloid beta




Brain-derived neurotrophic factor


Cornu Ammonis (hippocampal subfield)


Calcium/calmodulin-dependent kinase II


Central nervous system


Cyclic AMP


Cyclic AMP-responsive element-binding protein


C-reactive protein




Diagnostic and statistical manual of mental disorders


Glutamate cysteine ligase catalytic subunit


Glial fibrillary acidic protein


Reduced glutathione


Oxidized glutathione




Ionized calcium binding adaptor molecule 1


Inhibitor of nuclear factor kappa-B kinase subunit B


Interleukin 1 beta


Interleukin 6


Inducible nitric oxide synthase




Kelch-like ECH-associated protein 1




Long-term potentiation


Mild cognitive impairment




Mini Mental Status Exam


Montreal Cognition Assessment


Mammalian target of rapamycin


Morris water maze


Nuclear factor kappa-light-chain-enhancer of activated B cells


p-N-methyl-d-aspartate receptor


Nitric oxide


Novel object location


Neuropsychiatric Inventory


Nuclear factor (erythroid-derived 2)-like 2




Parkinson’s disease


Phosphoinositide 3-kinase

PS1 & 2:

Presenilin 1 and 2


Reactive oxygen species


Senescence accelerated mouse–Prone 8


Senescence resistant




Superoxide dismutase




Tumor necrosis factor alpha


Tropomycin receptor kinase B




  1. Adiwidjaja J, McLachlan AJ, Boddy AV (2017) Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 13(9):953–972. https://doi.org/10.1080/17425255.2017.1360279

    Article  PubMed  CAS  Google Scholar 

  2. Alappat L, Awad AB (2010) Curcumin and obesity: evidence and mechanisms. Nutr Rev 68(12):729–738. https://doi.org/10.1111/j.1753-4887.2010.00341.x

    Article  PubMed  Google Scholar 

  3. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008) Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett 267(1):133–164. https://doi.org/10.1016/j.canlet.2008.03.025

    Article  PubMed  CAS  Google Scholar 

  4. Anand P, Sung B, Kunnumakkara AB, Rajasekharan KN, Aggarwal BB (2011) Suppression of pro-inflammatory and proliferative pathways by diferuloylmethane (curcumin) and its analogues dibenzoylmethane, dibenzoylpropane, and dibenzylideneacetone: role of Michael acceptors and Michael donors. Biochem Pharmacol 82(12):1901–1909. https://doi.org/10.1016/j.bcp.2011.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B (2010) Neuroprotective effects of the polyphenolic antioxidant agent, curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 96(4):378–385. https://doi.org/10.1016/j.pbb.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  6. Banji D, Banji OJ, Dasaroju S, Annamalai AR (2013) Piperine and curcumin exhibit synergism in attenuating D-galactose induced senescence in rats. Eur J Pharmacol 703(1–3):91–99. https://doi.org/10.1016/j.ejphar.2012.11.018

    Article  PubMed  CAS  Google Scholar 

  7. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  PubMed  CAS  Google Scholar 

  8. Bassani, T. B., Bonato, J. M., Machado, M. M. F., Coppola-Segovia, V., Moura, E. L. R., Zanata, S. M., …, Vital, M. (2017a). Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer's disease in rats. Mol Neurobiol doi:https://doi.org/10.1007/s12035-017-0645-9

  9. Bassani, T. B., Turnes, J. M., Moura, E. L. R., Bonato, J. M., Coppola-Segovia, V., Zanata, S. M., …, Vital, M. (2017b). Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type. Behav Brain Res, 335, 41–54. doi:https://doi.org/10.1016/j.bbr.2017.08.014

  10. Baum, L., Lam, C. W., Cheung, S. K., Kwok, T., Lui, V., Tsoh, J., …, Mok, V. (2008). Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol, 28(1), 110–113. doi:https://doi.org/10.1097/jcp.0b013e318160862c

  11. Bea F, Hudson FN, Chait A, Kavanagh TJ, Rosenfeld ME (2003) Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res 92(4):386–393. https://doi.org/10.1161/01.RES.0000059561.65545.16

    Article  PubMed  CAS  Google Scholar 

  12. Belviranli M, Okudan N, Atalik KE, Oz M (2013) Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology 14(2):187–196. https://doi.org/10.1007/s10522-013-9422-y

    Article  PubMed  CAS  Google Scholar 

  13. Bermejo, P., Martin-Aragon, S., Benedi, J., Susin, C., Felici, E., Gil, P., …, Villar, A. M. (2008). Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer's disease from mild cognitive impairment. Free Radic Res, 42(2), 162–170. doi:https://doi.org/10.1080/10715760701861373

  14. Bhattacharya, I., Basu, S., Sarda, K., Gautam, M., Nagarajan, P., Pradhan, B. S., …, Majumdar, S. S. (2015). Low levels of Galphas and Ric8b in testicular sertoli cells may underlie restricted FSH action during infancy in primates. Endocrinology, 156(3), 1143–1155. doi:https://doi.org/10.1210/en.2014-1746

  15. Bigford GE, Del Rossi G (2014) Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr 5(4):394–403. https://doi.org/10.3945/an.113.005264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bilkei-Gorzo A (2014) Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 142(2):244–257. https://doi.org/10.1016/j.pharmthera.2013.12.009

    Article  PubMed  CAS  Google Scholar 

  17. Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124(5):307–321. https://doi.org/10.3109/00207454.2013.833510

    Article  PubMed  CAS  Google Scholar 

  18. Catorce MN, Gevorkian G (2016) LPS-induced murine Neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14(2):155–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chandra V, Pandav R, Dodge HH, Johnston JM, Belle SH, DeKosky ST, Ganguli M (2001) Incidence of Alzheimer's disease in a rural community in India: the indo-US study. Neurology 57(6):985–989

    Article  PubMed  CAS  Google Scholar 

  20. Chen, Q., Prior, M., Dargusch, R., Roberts, A., Riek, R., Eichmann, C., … Schubert, D. (2011). A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease. PLoS One, 6(12), e27865. doi:https://doi.org/10.1371/journal.pone.0027865

  21. Cox KH, Pipingas A, Scholey AB (2014) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29:642–651. https://doi.org/10.1177/0269881114552744

    Article  PubMed  CAS  Google Scholar 

  22. Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29(5):642–651. https://doi.org/10.1177/0269881114552744

    Article  PubMed  CAS  Google Scholar 

  23. Cui X, Wang L, Zuo P, Han Z, Fang Z, Li W, Liu J (2004) D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology 5(5):317–325. https://doi.org/10.1007/s10522-004-2570-3

    Article  PubMed  CAS  Google Scholar 

  24. de Jager CA (2014) Critical levels of brain atrophy associated with homocysteine and cognitive decline. Neurobiol Aging 35(Suppl 2):S35–S39. https://doi.org/10.1016/j.neurobiolaging.2014.03.040

    Article  PubMed  CAS  Google Scholar 

  25. DeLeve LD, Kaplowitz N (1990) Importance and regulation of hepatic glutathione. Semin Liver Dis 10(4):251–266. https://doi.org/10.1055/s-2008-1040481

    Article  PubMed  CAS  Google Scholar 

  26. Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128. https://doi.org/10.1016/j.neubiorev.2017.01.044

    Article  PubMed  Google Scholar 

  27. Dong S, Zeng Q, Mitchell ES, Xiu J, Duan Y, Li C, Zhao Z (2012) Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One 7(2):e31211. https://doi.org/10.1371/journal.pone.0031211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Doody RS, Farlow M, Aisen PS, Alzheimer's Disease Cooperative Study Data A, Publication C (2014) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer's disease. N Engl J Med 370(15):1460–1460. https://doi.org/10.1056/NEJMc1402193

    PubMed  Article  Google Scholar 

  29. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6(3):361–370. https://doi.org/10.1111/j.1474-9726.2007.00294.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin—from molecule to biological function. Angew Chem Int Ed Engl 51(22):5308–5332. https://doi.org/10.1002/anie.201107724

    Article  PubMed  CAS  Google Scholar 

  31. Forster MJ, Lal H (1999) Estimating age-related changes in psychomotor function: influence of practice and of level of caloric intake in different genotypes. Neurobiol Aging 20(2):167–176

    Article  PubMed  CAS  Google Scholar 

  32. Forster MJ, Morris P, Sohal RS (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J 17(6):690–692. https://doi.org/10.1096/fj.02-0533fje

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fujisawa S, Atsumi T, Ishihara M, Kadoma Y (2004) Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 24(2B):563–569

    PubMed  CAS  Google Scholar 

  34. Gauthier, S., Feldman, H. H., Schneider, L. S., Wilcock, G. K., Frisoni, G. B., Hardlund, J. H., …, Wischik, C. M. (2016). Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 388(10062), 2873–2884. doi:https://doi.org/10.1016/S0140-6736(16)31275-2

  35. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 75(4):787–809. https://doi.org/10.1016/j.bcp.2007.08.016

    Article  PubMed  CAS  Google Scholar 

  36. Gupta SC, Kismali G, Aggarwal BB (2013) Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 39(1):2–13. https://doi.org/10.1002/biof.1079

    Article  PubMed  CAS  Google Scholar 

  37. Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., …, Kummer, M. P. (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurol, 14(4), 388–405. doi:https://doi.org/10.1016/S1474-4422(15)70016-5

  38. Hishikawa, N., Takahashi, Y., Amakusa, Y., Tanno, Y., Tuji, Y., Niwa, H., … Krishna, U. K. (2012). Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia. Ayu, 33(4), 499–504. doi:https://doi.org/10.4103/0974-8520.110524

  39. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Huang GZ, Woolley CS (2012) Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron 74(5):801–808. https://doi.org/10.1016/j.neuron.2012.03.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    Article  PubMed  CAS  Google Scholar 

  42. Ishrat, T., Hoda, M. N., Khan, M. B., Yousuf, S., Ahmad, M., Khan, M. M., . . . Islam, F. (2009). Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT). Eur Neuropsychopharmacol, 19(9), 636–647. doi:https://doi.org/10.1016/j.euroneuro.2009.02.002

  43. Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 56(2):91–97. https://doi.org/10.3164/jcbn.14-134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 11(1):9–17. https://doi.org/10.1038/nrn2754

    Article  PubMed  CAS  Google Scholar 

  45. Jimenez-Osorio AS, Monroy A, Alavez S (2016) Curcumin and insulin resistance-molecular targets and clinical evidences. Biofactors 42(6):561–580. https://doi.org/10.1002/biof.1302

    Article  PubMed  CAS  Google Scholar 

  46. Joseph J, Cole G, Head E, Ingram D (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29(41):12795–12801. https://doi.org/10.1523/JNEUROSCI.3520-09.2009

    Article  PubMed  CAS  Google Scholar 

  47. Kawamoto EM, Scavone C, Mattson MP, Camandola S (2013) Curcumin requires tumor necrosis factor alpha signaling to alleviate cognitive impairment elicited by lipopolysaccharide. Neurosignals 21(1–2):75–88. https://doi.org/10.1159/000336074

    Article  PubMed  CAS  Google Scholar 

  48. Khajuria A, Thusu N, Zutshi U (2002) Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine 9(3):224–231. https://doi.org/10.1078/0944-7113-00114

    Article  PubMed  CAS  Google Scholar 

  49. Kumar A, Ahuja A, Ali J, Baboota S (2010) Conundrum and therapeutic potential of curcumin in drug delivery. Crit Rev Ther Drug Carrier Syst 27(4):279–312

    Article  PubMed  CAS  Google Scholar 

  50. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11(4):338–378. https://doi.org/10.2174/1570159X11311040002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Leonard BE (2017) Major depression as a neuroprogressive prelude to dementia: what is the evidence? Mod Trends Pharmacopsychiatry 31:56–66. https://doi.org/10.1159/000470807

    Article  PubMed  Google Scholar 

  53. Lin, L. Y., Zhang, J., Dai, X. M., Xiao, N. A., Wu, X. L., Wei, Z., … Chen, X. C. (2016). Early-life stress leads to impaired spatial learning and memory in middle-aged ApoE4-TR mice. Mol Neurodegener, 11(1), 51. doi:https://doi.org/10.1186/s13024-016-0107-2

  54. Magesh S, Chen Y, Hu L (2012) Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 32(4):687–726. https://doi.org/10.1002/med.21257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Maher P, Akaishi T, Schubert D, Abe K (2010) A pyrazole derivative of curcumin enhances memory. Neurobiol Aging 31(4):706–709. https://doi.org/10.1016/j.neurobiolaging.2008.05.020

    Article  PubMed  CAS  Google Scholar 

  56. Malkki H (2015) Alzheimer disease: insulin resistance could be linked to risk of AD via reduced glucose uptake. Nat Rev Neurol 11(9):485. https://doi.org/10.1038/nrneurol.2015.147

    Article  PubMed  CAS  Google Scholar 

  57. Mani, M., Khaghani, S., Gol Mohammadi, T., Zamani, Z., Azadmanesh, K., Meshkani, R., …, Mostafavi, E. (2013). Activation of Nrf2-antioxidant response element mediated glutamate cysteine ligase expression in hepatoma cell line by homocysteine. Hepat Mon, 13(5), e8394. doi:https://doi.org/10.5812/hepatmon.8394

  58. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827(1):65–75. https://doi.org/10.1016/j.jchromb.2005.04.023

    Article  PubMed  CAS  Google Scholar 

  59. Mazzanti G, Di Giacomo S (2016) Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21(9). https://doi.org/10.3390/molecules21091243

  60. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23. https://doi.org/10.1016/j.metabol.2005.01.008

    Article  PubMed  CAS  Google Scholar 

  61. Miyasaka T, Xie C, Yoshimura S, Shinzaki Y, Yoshina S, Kage-Nakadai E et al (2016) Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol Aging 39:69–81. https://doi.org/10.1016/j.neurobiolaging.2015.11.004

    Article  PubMed  CAS  Google Scholar 

  62. Molino S, Dossena M, Buonocore D, Ferrari F, Venturini L, Ricevuti G, Verri M (2016) Polyphenols in dementia: from molecular basis to clinical trials. Life Sci 161:69–77. https://doi.org/10.1016/j.lfs.2016.07.021

    Article  PubMed  CAS  Google Scholar 

  63. Morley JE, Armbrecht HJ, Farr SA, Kumar VB (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease. Biochim Biophys Acta 1822(5):650–656. https://doi.org/10.1016/j.bbadis.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  64. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557. https://doi.org/10.1016/j.molmed.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  65. Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG (2014) Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183. https://doi.org/10.1016/j.ejmech.2014.04.050

    Article  PubMed  CAS  Google Scholar 

  66. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137. https://doi.org/10.1146/annurev-pathol-020712-163918

    Article  PubMed  CAS  Google Scholar 

  67. Nam, S. M., Choi, J. H., Yoo, D. Y., Kim, W., Jung, H. Y., Kim, J. W., … Hwang, I. K. (2014). Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food, 17(6), 641–649. doi:https://doi.org/10.1089/jmf.2013.2965

  68. Ng TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH (2006) Curry consumption and cognitive function in the elderly. Am J Epidemiol 164(9):898–906. https://doi.org/10.1093/aje/kwj267

    Article  PubMed  Google Scholar 

  69. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53(6):4094–4125. https://doi.org/10.1007/s12035-015-9337-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Petri S, Korner S, Kiaei M (2012) Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int 2012(878030):1–7. https://doi.org/10.1155/2012/878030

    Article  Google Scholar 

  72. Piirainen S, Youssef A, Song C, Kalueff AV, Landreth GE, Malm T, Tian L (2017) Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci Biobehav Rev 77:148–164. https://doi.org/10.1016/j.neubiorev.2017.01.046

    Article  PubMed  CAS  Google Scholar 

  73. Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315. https://doi.org/10.1016/j.pneurobio.2010.06.009

    Article  PubMed  Google Scholar 

  74. Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT (2013) Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimers Res Ther 5(5):49. https://doi.org/10.1186/alzrt214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Puzianowska-Kuznicka, M., Owczarz, M., Wieczorowska-Tobis, K., Nadrowski, P., Chudek, J., Slusarczyk, P., …Mossakowska, M. (2016). Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing, 13, 21. doi:https://doi.org/10.1186/s12979-016-0076-x

  76. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    PubMed  PubMed Central  Google Scholar 

  77. Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, Martins RN (2016) Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr 115(12):2106–2113. https://doi.org/10.1017/S0007114516001203

    Article  PubMed  CAS  Google Scholar 

  78. Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: the spotlight for cellular stress responses. Life Sci 188:53–67. https://doi.org/10.1016/j.lfs.2017.08.029

    Article  PubMed  CAS  Google Scholar 

  79. Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., …, Cole, G. M. (2012). Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther, 4(5), 43. doi:https://doi.org/10.1186/alzrt146

  80. Rinwa P, Kumar A (2012) Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res 1488:38–50. https://doi.org/10.1016/j.brainres.2012.10.002

    Article  PubMed  CAS  Google Scholar 

  81. Salloway S, Sperling R, Brashear HR (2014) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer's disease. N Engl J Med 370(15):1460

    PubMed  CAS  Google Scholar 

  82. Sankowski R, Mader S, Valdes-Ferrer SI (2015) Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 9:28. https://doi.org/10.3389/fncel.2015.00028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sarker MR, Franks S, Sumien N, Thangthaeng N, Filipetto F, Forster M (2015) Curcumin mimics the neurocognitive and anti-inflammatory effects of caloric restriction in a mouse model of midlife obesity. PLoS One 10(10):e0140431. https://doi.org/10.1371/journal.pone.0140431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M (2013) Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res 73(13):4158–4168. https://doi.org/10.1158/0008-5472.CAN-12-4499

    Article  PubMed  CAS  Google Scholar 

  85. Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP (2012) Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria. Mol Neurobiol 46(1):161–178. https://doi.org/10.1007/s12035-012-8282-9

    Article  PubMed  CAS  Google Scholar 

  86. Shailaja M, Damodara Gowda KM, Vishakh K, Suchetha Kumari N (2017) Anti-aging role of curcumin by modulating the inflammatory markers in albino Wistar rats. J Natl Med Assoc 109(1):9–13. https://doi.org/10.1016/j.jnma.2017.01.005

    Article  PubMed  Google Scholar 

  87. Shanmugam, M. K., Rane, G., Kanchi, M. M., Arfuso, F., Chinnathambi, A., Zayed, M. E., …Sethi, G. (2015). The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 20(2), 2728–2769. doi:https://doi.org/10.3390/molecules20022728

  88. Shehzad A, Rehman G, Lee YS (2013) Curcumin in inflammatory diseases. Biofactors 39(1):69–77. https://doi.org/10.1002/biof.1066

    Article  PubMed  CAS  Google Scholar 

  89. Siddique YH, Naz F, Jyoti S (2014) Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson's disease. Biomed Res Int 2014(606928):1–6. https://doi.org/10.1155/2014/606928

    CAS  Article  Google Scholar 

  90. Song X, Bao M, Li D, Li YM (1999) Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108(3):239–251

    Article  PubMed  CAS  Google Scholar 

  91. Sun CY, Qi SS, Zhou P, Cui HR, Chen SX, Dai KY, Tang ML (2013) Neurobiological and pharmacological validity of curcumin in ameliorating memory performance of senescence-accelerated mice. Pharmacol Biochem Behav 105:76–82. https://doi.org/10.1016/j.pbb.2013.02.002

    Article  PubMed  CAS  Google Scholar 

  92. Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131:682–691

    PubMed  CAS  Google Scholar 

  93. Suzuki M, Willcox DC, Rosenbaum MW, Willcox BJ (2010) Oxidative stress and longevity in Okinawa: an investigation of blood lipid peroxidation and tocopherol in okinawan centenarians. Curr Gerontol Geriatr Res 2010(380460):1–10. https://doi.org/10.1155/2010/380460

    Article  Google Scholar 

  94. Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D (2011) The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 14(1):41–48. https://doi.org/10.1097/MCO.0b013e32834136f2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tomita T (2017) Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease. Adv Biol Regul 64:33–38. https://doi.org/10.1016/j.jbior.2017.01.001

    Article  PubMed  CAS  Google Scholar 

  96. Trujillo J, Granados-Castro LF, Zazueta C, Anderica-Romero AC, Chirino YI, Pedraza-Chaverri J (2014) Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim) 347(12):873–884. https://doi.org/10.1002/ardp.201400266

    Article  CAS  Google Scholar 

  97. Vas CJ, Pinto C, Panikker D, Noronha S, Deshpande N, Kulkarni L, Sachdeva S (2001) Prevalence of dementia in an urban Indian population. Int Psychogeriatr 13(4):439–450

    Article  PubMed  CAS  Google Scholar 

  98. Vivar C (2015) Adult hippocampal neurogenesis, aging and neurodegenerative diseases: possible strategies to prevent cognitive impairment. Curr Top Med Chem 15(21):2175–2192

    Article  PubMed  CAS  Google Scholar 

  99. Wang C, Zhang X, Teng Z, Zhang T, Li Y (2014b) Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol 740:312–320. https://doi.org/10.1016/j.ejphar.2014.06.051

    Article  PubMed  CAS  Google Scholar 

  100. Wang, P., Su, C., Li, R., Wang, H., Ren, Y., Sun, H., …Jiang, S. (2014a). Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res, 92(2), 218–231. doi:https://doi.org/10.1002/jnr.23322

  101. Willette, A. A., Bendlin, B. B., Starks, E. J., Birdsill, A. C., Johnson, S. C., Christian, B. T., …Asthana, S. (2015). Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol, 72(9), 1013–1020. doi:https://doi.org/10.1001/jamaneurol.2015.0613

  102. Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U (2015) Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation 12:85. https://doi.org/10.1186/s12974-015-0306-8

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xie, F., Zhao, Y., Ma, J., Gong, J. B., Wang, S. D., Zhang, L., …, Qian, L. J. (2016). The involvement of homocysteine in stress-induced Abeta precursor protein misprocessing and related cognitive decline in rats. Cell Stress Chaperones, 21(5), 915–926. doi:https://doi.org/10.1007/s12192-016-0718-0

  104. Yanagisawa, D., Ibrahim, N. F., Taguchi, H., Morikawa, S., Hirao, K., Shirai, N., …, Tooyama, I. (2015). Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol Aging, 36(1), 201–210. doi:https://doi.org/10.1016/j.neurobiolaging.2014.07.041

  105. Zhang X, Xiao Z, Yao J, Zhao G, Fa X, Niu J (2013) Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol Cell Biochem 372(1–2):169–179. https://doi.org/10.1007/s11010-012-1458-9

    Article  PubMed  CAS  Google Scholar 

  106. Zhu Y, Carvey PM, Ling Z (2006) Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 1090(1):35–44. https://doi.org/10.1016/j.brainres.2006.03.063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Marjana Rahman Sarker.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarker, M.R., Franks, S.F. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. GeroScience 40, 73–95 (2018). https://doi.org/10.1007/s11357-018-0017-z

Download citation


  • Curcumin
  • Cognition
  • Aging