, Volume 39, Issue 4, pp 465–473 | Cite as

Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging

  • Stefano Tarantini
  • Gabor A. Fulop
  • Tamas Kiss
  • Eszter Farkas
  • Dániel Zölei-Szénási
  • Veronica Galvan
  • Peter Toth
  • Anna Csiszar
  • Zoltan Ungvari
  • Andriy YabluchanskiyEmail author


Increasing evidence from epidemiological, clinical, and experimental studies indicates that cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including both vascular cognitive impairment (VCI) and Alzheimer’s disease. Vascular contributions to cognitive impairment and dementia (VCID) include impairment of neurovascular coupling responses/functional hyperemia (“neurovascular uncoupling”). Due to the growing interest in understanding and pharmacologically targeting pathophysiological mechanisms of VCID, there is an increasing need for sensitive, easy-to-establish methods to assess neurovascular coupling responses. Laser speckle contrast imaging (LSCI) is a technique that allows rapid and minimally invasive visualization of changes in regional cerebromicrovascular blood perfusion. This type of imaging technique combines high resolution and speed to provide great spatiotemporal accuracy to measure moment-to-moment changes in cerebral blood flow induced by neuronal activation. Here, we provide detailed protocols for the successful measurement in neurovascular coupling responses in anesthetized mice equipped with a thinned-skull cranial window using LSCI. This method can be used to evaluate the effects of anti-aging or anti-AD treatments on cerebromicrovascular health.


Neurovascular coupling Functional hyperemia Laser speckle contrast imaging Laser speckle contrast analysis LASCA Laser speckle imaging LSI 



This work was supported by grants from the American Heart Association (to ST, MNVA, AC, and ZU), National Center for Complementary and Alternative Medicine (R01-AT006526 to ZU), National Institute on Aging (R01-AG047879 to AC; R01-AG038747), NIA-supported Geroscience Training Program in Oklahoma (T32AG052363), NIA-supported Oklahoma Nathan Shock Center (3P30AG050911-02S1), National Institute of Neurological Disorders and Stroke (NINDS; R01-NS056218 to AC), Oklahoma Shared Clinical and Translational Resources (to AY; NIGMS U54GM104938), Oklahoma Center for the Advancement of Science and Technology (to AC, ZU, and AY), the Reynolds Foundation (to ZU, AC, and AY), and the Presbyterian Health Foundation (to AC, ZU, and AY). We also acknowledge support from the Merit Review Award I01 BX002211-01A2 from the US Department of Veterans Affairs (to VG), William & Ella Owens Medical Research Foundation (VG), San Antonio Nathan Shock Center of Excellence in the Biology of Aging (2 P30 AG013319-21) (VG), and the Robert L. Bailey and daughter Lisa K. Bailey Alzheimer’s Fund in memory of Jo Nell Bailey (VG). This work was also supported by the National Research, Development and Innovation Office of Hungary (Grant No. K111923); the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (No. BO/00327/14/5, to EF); and the EU-funded Hungarian Grant No. EFOP-3.6.1-16-2016-00008.


  1. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE. Igf-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience. 2017Google Scholar
  2. Ayata C, Dunn AK, Gursoy OY, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755CrossRefPubMedGoogle Scholar
  3. Balbi M, Ghosh M, Longden TA, Jativa Vega M, Gesierich B, Hellal F, Lourbopoulos A, Nelson MT, Plesnila N (2015) Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 35:1445–1453CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, Gesing A, Kopchick JJ, Siddiqi SA, Masternak MM (2017) The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience 39:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bere Z, Obrenovitch TP, Kozak G, Bari F, Farkas E (2014) Imaging reveals the focal area of spreading depolarizations and a variety of hemodynamic responses in a rat microembolic stroke model. J Cereb Blood Flow Metab 34:1695–1705CrossRefPubMedPubMedCentralGoogle Scholar
  6. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22:R35–R66CrossRefPubMedGoogle Scholar
  7. Callisaya ML, Launay CP, Srikanth VK, Verghese J, Allali G, Beauchet O. Cognitive status, fast walking speed and walking speed reserve-the gait and Alzheimer interactions tracking (gait) study. Geroscience. 2017Google Scholar
  8. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, Van Remmen H, Richardson A. A new mouse model of frailty: The Cu/Zn superoxide dismutase knockout mouse. Geroscience. 2017Google Scholar
  10. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201CrossRefPubMedGoogle Scholar
  11. Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA, Dale AM, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30CrossRefPubMedGoogle Scholar
  12. Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, McAuley E, Sutton BP, Kramer AF, Gratton G. Neurovascular coupling in normal aging: A combined optical, erp and fmri study. Neuroimage. 2013Google Scholar
  13. Farkas E, Bari F, Obrenovitch TP (2010) Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex. NeuroImage 51:734–742CrossRefPubMedGoogle Scholar
  14. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and alzheimer disease. J Appl Physiol (1985) 100:328–335CrossRefGoogle Scholar
  15. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council CoE, Prevention CoCNCoCR, Intervention, Council on Cardiovascular S, Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713CrossRefPubMedPubMedCentralGoogle Scholar
  16. Grimmig B, Kim SH, Nash K, Bickford PC, Douglas SR (2017) Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience 39:19–32CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hamel E, Royea J, Ongali B, Tong XK (2016) Neurovascular and cognitive failure in Alzheimer’s disease: benefits of cardiovascular therapy. Cell Mol Neurobiol 36:219–232CrossRefPubMedGoogle Scholar
  18. Hancock SE, Friedrich MG, Mitchell TW, Truscott RJ, Else PL (2017) The phospholipid composition of the human entorhinal cortex remains relatively stable over 80 years of adult aging. Geroscience 39:73–82CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, Bacskai BJ, Dale AM, Boas DA (2007) Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. NeuroImage 35:89–104CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, Hofmann M, Minoshima S, Schwaiger M, Dirnagl U, Villringer A (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)—correlation with simultaneous rCBF-PET measurements. Brain res 755:293–303CrossRefPubMedGoogle Scholar
  21. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC (2016) Alzheimer’s disease neuroimaging. I. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kane AE, Gregson E, Theou O, Rockwood K, Howlett SE. The association between frailty, the metabolic syndrome, and mortality over the lifespan. Geroscience. 2017Google Scholar
  23. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C (2004) Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ res 95:1019–1026CrossRefPubMedGoogle Scholar
  24. Kim S, Myers L, Wyckoff J, Cherry KE, Jazwinski SM (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  25. Konopka AR, Laurin JL, Musci RV, Wolff CA, Reid JJ, Biela LM, Zhang Q, Peelor FF, 3rd, Melby CL, Hamilton KL, Miller BF. Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults. Geroscience. 2017Google Scholar
  26. Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10:57CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lauritzen M, Fabricius M (1995) Real-time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex. Neuroreport 6:1271–1273CrossRefPubMedGoogle Scholar
  28. Liu X, Bhatt T, Wang S, Yang F, Pai YC (2017) Retention of the “first-trial effect” in gait-slip among community-living older adults. Geroscience 39:93–102CrossRefPubMedPubMedCentralGoogle Scholar
  29. Low LA, Bauer LC, Klaunberg BA (2016) Comparing the effects of isoflurane and alpha chloralose upon mouse physiology. PLoS One 11:e0154936CrossRefPubMedPubMedCentralGoogle Scholar
  30. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG (2007) Relationship between neural, vascular, and bold signals in isoflurane-anesthetized rat somatosensory cortex. Cereb Cortex 17:942–950CrossRefPubMedGoogle Scholar
  31. Menyhart A, Zolei-Szenasi D, Puskas T, Makra P, Orsolya MT, Szepes BE, Toth R, Ivankovits-Kiss O, Obrenovitch TP, Bari F, Farkas E (2017) Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci rep 7:1154CrossRefPubMedPubMedCentralGoogle Scholar
  32. Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML (2017) The impact of aging on cardiac extracellular matrix. Geroscience 39:7–18CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31:1354–1370CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P, Tong XK, Hamel E (2008) Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 28:9287–9296CrossRefPubMedGoogle Scholar
  35. Norup Nielsen A, Lauritzen M (2001) Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 533:773–785CrossRefPubMedGoogle Scholar
  36. Obrenovitch TP, Chen S, Farkas E (2009) Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods. NeuroImage 45:68–74CrossRefPubMedGoogle Scholar
  37. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, Lecrux C, Imboden H, Hamel E (2014) Angiotensin ii type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol dis 68:126–136CrossRefPubMedGoogle Scholar
  38. Papadopoulos P, Tong XK, Hamel E (2014) Selective benefits of simvastatin in bitransgenic appswe,ind/tgf-beta1 mice. Neurobiol Aging 35:203–212CrossRefPubMedGoogle Scholar
  39. Papadopoulos P, Tong XK, Imboden H, Hamel E. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-beta and transforming growth factor-beta1. J Cereb Blood Flow Metab. 2016:271678X16658489Google Scholar
  40. Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, Carlson GA, Iadecola C (2005) NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 25:1769–1777CrossRefPubMedGoogle Scholar
  41. Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918CrossRefPubMedGoogle Scholar
  42. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105:1347–1352CrossRefPubMedPubMedCentralGoogle Scholar
  43. Perrott KM, Wiley CD Desprez PY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience. 2017Google Scholar
  44. Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797CrossRefPubMedGoogle Scholar
  45. Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: Implications for the developmental origins of cancer. Geroscience. 2017Google Scholar
  46. Rancillac A, Geoffroy H, Rossier J (2012) Impaired neurovascular coupling in the appxps1 mouse model of Alzheimer’s disease. Curr Alzheimer res 9:1221–1230CrossRefPubMedGoogle Scholar
  47. Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, Lazeron RH, Valk J, Scheltens P (2000) Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR am J Neuroradiol 21:1869–1875PubMedGoogle Scholar
  48. Royea J, Zhang L, Tong XK, Hamel E. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer’s disease. J Neurosci. 2017Google Scholar
  49. Ruth B (1990) Blood flow determination by the laser speckle method. Int J Microcirc Clin Exp 9:21–45PubMedGoogle Scholar
  50. Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, Frosch MP, Hyman BT, Moskowitz MA, Ayata C (2007) Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain 130:2310–2319CrossRefPubMedGoogle Scholar
  51. Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME, Eldridge SA, Calderazzo SM, Mortazavi F, Moore TL, Rosene DL. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. Geroscience. 2017Google Scholar
  52. Sierra F, Kohanski R (2017) Geroscience and the trans-NIH geroscience interest group, GSIG. Geroscience 39:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  53. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, Schneider JA, Wellington C, Wilcock DM, Zipfel GJ, Zlokovic B, Bain LJ, Bosetti F, Galis ZS, Koroshetz W, Carrillo MC (2015) Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement 11:710–717CrossRefPubMedGoogle Scholar
  54. Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology. 2013Google Scholar
  55. Stobart JL, Lu L, Anderson HD, Mori H, Anderson CM (2013) Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci USA 110:3149–3154CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1994) Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 35:3825–3834PubMedGoogle Scholar
  57. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges E, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tarantini S, Tran CH, Gordon GR, Ungvari Z, Csiszar A (2016) Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. doi: 10.1016/j.exger.2016.1011.1004
  59. Tenk J, Rostas I, Furedi N, Miko A, Solymar M, Soos S, Gaszner B, Feller D, Szekely M, Petervari E, Balasko M (2017) Age-related changes in central effects of corticotropin-releasing factor (CRF) suggest a role for this mediator in aging anorexia and cachexia. Geroscience 39:61–72CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ (2011) Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc res 82:326–332CrossRefPubMedGoogle Scholar
  61. Tong XK, Lecrux C, Rosa-Neto P, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci 32:4705–4715CrossRefPubMedGoogle Scholar
  62. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari ZI (2014) Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and down-regulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 306:H299–H308CrossRefPubMedGoogle Scholar
  63. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z (2015) IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034–1044CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fulop GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017a) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. Geroscience 39:33–42CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GÁ, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A. Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. GeroScience. 2017b:in pressGoogle Scholar
  66. Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DE, Kaeberlein M (2017a) A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. GeroscienceGoogle Scholar
  67. Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DE, Kaeberlein M (2017b) Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. Geroscience 39:43–50CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wells JA, Christie IN, Hosford PS, Huckstepp RT, Angelova PR, Vihko P, Cork SC, Abramov AY, Teschemacher AG, Kasparov S, Lythgoe MF, Gourine AV (2015) A critical role for purinergic signalling in the mechanisms underlying generation of bold fMRI responses. J Neurosci 35:5284–5292CrossRefPubMedPubMedCentralGoogle Scholar
  69. White WJ, Field KJ (1987) Anesthesia and surgery of laboratory animals. Vet Clin North Am Small Anim Pract 17:989–1017CrossRefPubMedGoogle Scholar
  70. Winship IR (2014) Laser speckle contrast imaging to measure changes in cerebral blood flow. Methods Mol Biol 1135:223–235CrossRefPubMedGoogle Scholar
  71. Zaletel M, Strucl M, Pretnar-Oblak J, Zvan B (2005) Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Funct Neurol 20:115–120PubMedGoogle Scholar

Copyright information

© American Aging Association 2017

Authors and Affiliations

  • Stefano Tarantini
    • 1
    • 2
  • Gabor A. Fulop
    • 1
    • 2
  • Tamas Kiss
    • 1
    • 2
    • 3
  • Eszter Farkas
    • 3
  • Dániel Zölei-Szénási
    • 3
  • Veronica Galvan
    • 4
  • Peter Toth
    • 1
    • 2
    • 5
  • Anna Csiszar
    • 1
    • 2
  • Zoltan Ungvari
    • 1
    • 2
  • Andriy Yabluchanskiy
    • 1
    • 2
    Email author
  1. 1.Reynolds Oklahoma Center on AgingUniversity of Oklahoma Health Sciences CenterOklahomaUSA
  2. 2.Translational Geroscience Laboratory, Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahomaUSA
  3. 3.Faculty of Medicine & Faculty of Science and Informatics, Department of Medical Physics and InformaticsUniversity of SzegedSzegedHungary
  4. 4.Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging Studies University of Texas Health Science Center at San AntonioSan AntonioUSA
  5. 5.Department of NeurosurgeryUniversity of PecsPecsHungary

Personalised recommendations