Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells

Abstract

Apigenin (4′,5,7,-trihydroxyflavone) is a flavonoid found in certain herbs, fruits, and vegetables. Apigenin can attenuate inflammation, which is associated with many chronic diseases of aging. Senescent cells—stressed cells that accumulate with age in mammals—display a pro-inflammatory senescence-associated secretory phenotype (SASP) that can drive or exacerbate several age-related pathologies, including cancer. Flavonoids, including apigenin, were recently shown to reduce the SASP of a human fibroblast strain induced to senesce by bleomycin. Here, we confirm that apigenin suppresses the SASP in three human fibroblast strains induced to senesce by ionizing radiation, constitutive MAPK (mitogen-activated protein kinase) signaling, oncogenic RAS, or replicative exhaustion. Apigenin suppressed the SASP in part by suppressing IL-1α signaling through IRAK1 and IRAK4, p38-MAPK, and NF-κB. Apigenin was particularly potent at suppressing the expression and secretion of CXCL10 (IP10), a newly identified SASP factor. Further, apigenin-mediated suppression of the SASP substantially reduced the aggressive phenotype of human breast cancer cells, as determined by cell proliferation, extracellular matrix invasion, and epithelial-mesenchymal transition. Our results support the idea that apigenin is a promising natural product for reducing the impact of senescent cells on age-related diseases such as cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari S, Ferrannini E, Serio M (2005) Age-dependent changes in CXC chemokine ligand 10 serum levels in euthyroid subjects. J Interf Cytokine Res 25:547–552

    CAS  Article  Google Scholar 

  2. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness R, Jeganathan KB, Casaclang Versoza GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13:11–22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280:5636–5645

    CAS  Article  PubMed  Google Scholar 

  6. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    CAS  Article  PubMed  Google Scholar 

  7. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour C, Parrinello S, Hodgson G, Chin K, Desprez PY, Campisi J (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz D, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell non-automous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    CAS  Article  PubMed  Google Scholar 

  10. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith OM, Peacocke M, Campisi J (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Duarte S, Arango D, Parihar A, Hamel P, Yasmeen R, Doseff AI (2013) Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Internatl J Molec Sci 14:17664–17679

    Article  Google Scholar 

  12. Freund A, Orjalo A, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Molec Med 16:238–248

    CAS  Article  Google Scholar 

  13. Freund A, Patil PK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T (2011a) Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int Immunopharmacol 11:1050–1059

    Article  Google Scholar 

  15. Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T (2011b) Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int Immunopharmacol 11:1150–1159

    CAS  Article  PubMed  Google Scholar 

  16. Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC (2005) Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos 33(1):49–54

    CAS  Article  PubMed  Google Scholar 

  17. Gupta S, Afaq F, Mukhtar H (2001) Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Comm 287:914–920

    CAS  Article  PubMed  Google Scholar 

  18. Jayasooriya RG, Kang SH, Kang CL, Hyun Y, Moon DO, Hyun JW, Chang WY, Kim GY (2012) Apigenin decreases cell viability and telomerase activity in human leukemia cell lines. Food Chem Tox 50:2605–2611

    CAS  Article  Google Scholar 

  19. Kang OH, Lee JH, Kwon D (2011) Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in HMC-1 cells. Immunopharmacol Immunotoxicol 33:473–479

    CAS  Article  PubMed  Google Scholar 

  20. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kim MH (2003) Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem 89:529–538

    CAS  Article  PubMed  Google Scholar 

  22. Krtolica A, Parrinello S, Lockett S, Desprez P, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Laberge RM, Awad P, Campisi J, Desprez PY (2012b) Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5:39–44

    CAS  Article  PubMed  Google Scholar 

  24. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biol 17:1049–1061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, Liu S, Demaria M, Cong YS, Kapahi P, Desprez PY, Hughes RE, Campisi J (2012a) Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11:569–578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Lasry A, Ben-Neriah Y (2015) Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36:217–228

    CAS  Article  PubMed  Google Scholar 

  27. Li RR, Pang LL, Du Q, Shi Y, Dai WJ, Yin KS (2010) Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma. Immunopharmacol Immunotoxicol 32:364–370

    CAS  Article  PubMed  Google Scholar 

  28. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952

    CAS  Article  PubMed  Google Scholar 

  29. Lim H, Park H, Kim HP (2015) Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol 96:337–348

    CAS  Article  PubMed  Google Scholar 

  30. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  31. Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nature Rev Molec Cell Biol 15:482–496

    Article  Google Scholar 

  32. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 179:7121–7127

    CAS  Article  PubMed  Google Scholar 

  33. Noh HJ, Sung E, Kim GJY, Lee TJ, Song IH (2010) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncol Rep 24:277–283

    CAS  PubMed  Google Scholar 

  34. Orjalo A, Bhaumik D, Gengler B, Scott GK, Campisi J (2009) Cell surface IL-1α is an upstream regulator of the senescence-associated IL6/IL-8 cytokine network. Proc Natl Acad Sci U S A 106:17031–17036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Osada M, Imaoka S, Funae Y (2004) Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Lett 575:59–63

    CAS  Article  PubMed  Google Scholar 

  36. Reber L, Vermeulen L, Haegeman G, Frossard N (2009) Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 4(2):e4393

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reiners JJ, Clift R, Mathieu P (1999) Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis 20:1561–1566

    CAS  Article  PubMed  Google Scholar 

  38. Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biol 11:973–979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ross JA, Kasum C (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    CAS  Article  PubMed  Google Scholar 

  40. Ruiz PA, Haller D (2006) Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr 136:664–671

    CAS  PubMed  Google Scholar 

  41. Shukla S, Gupta S (2007) Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle 6:1102–1114

    CAS  Article  PubMed  Google Scholar 

  42. Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479–4489

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Remi-Martin Laberge for comments and discussions. This work was supported by the SENS Research Foundation to KP and by NIH grants AG009909 and AG017242 to JC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judith Campisi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Figure S1

Apigenin down-regulates the SASP in BJ fibroblasts. (A) Primary human BJ fibroblasts were induced to senesce (10 Gy X-irradiation) and immediately treated with increasing concentrations of apigenin for 10 days. CM were collected and analyzed for IL-6 secretion. (B) We investigated the levels of IL-8, GROA, IL-6 and IP10 secreted by treated (apigenin) and untreated (DMSO), NS or senescent BJ fibroblasts. Samples were in quadruplicate and levels of individual cytokines in senescent samples were normalized to the levels in DMSO-treated NS cells. (PDF 23 kb)

Figure S2

Apigenin reduces cytokine secretion of senescent IMR90 and BJ fibroblasts. (A) Primary IMR90 (PD 37) and (B) primary BJ (PD 34) human fibroblasts were induced to senesce by IR, and treated with apigenin or DMSO. CM were collected and the levels of 51 cytokines were analyzed by Luminex. Samples were in quadruplicate and levels of individual cytokines in senescent samples were normalized to the levels in DMSO-treated NS cells. (PDF 26 kb)

Figure S3

Effect of apigenin on the expression of major SASP factors in BJ fibroblasts. Using qPCR we determined the mRNA levels of major SASP factors in DMSO- and apigenin-treated non-senescent and senescent BJ fibroblasts (IL-6, IL-8, and GROA). IL-1A and IL-1B were also investigated at the mRNA level. (PDF 15 kb)

Figure S4

Apigenin reduces the senescence-induced inflammatory pathway activation. (A) IL-6 secretion of cells infected with a lentivirus NF-κB-luciferase reporter construct, induced to senesce by IR in the presence of apigenin, is shown. (B) NF-κB reporter activation in the senescent cells in (A) was measured by luminescence using the Promega Luciferase Assay System. (C) Induction of IL-6 secretion in NS and senescent HCA2 cells upon administration of three concentrations of recombinant IL-1A was measured by AlphaLISA. (PDF 18 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrott, K.M., Wiley, C.D., Desprez, P. et al. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience 39, 161–173 (2017). https://doi.org/10.1007/s11357-017-9970-1

Download citation

Keywords

  • Flavonoids
  • Human fibroblasts
  • Proliferation
  • Invasion
  • IL-6
  • IL-1A
  • IRAK1/4
  • NF-κB