GeroScience

, Volume 39, Issue 2, pp 147–160 | Cite as

The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer

  • Andrej Podlutsky
  • Marta Noa Valcarcel-Ares
  • Krysta Yancey
  • Viktorija Podlutskaya
  • Eszter Nagykaldi
  • Tripti Gautam
  • Richard A. Miller
  • William E. Sonntag
  • Anna Csiszar
  • Zoltan Ungvari
Original Article

Abstract

Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.

Keywords

Growth hormone Insulin-like growth factor-1 Lifespan, health span Longevity Endocrine Cellular resilience Stress resistance 

References

  1. Alderete TL, Byrd-Williams CE, Toledo-Corral CM, Conti DV, Weigensberg MJ, Goran MI (2011) Relationships between igf-1 and igfbp-1 and adiposity in obese african-american and latino adolescents. Obesity (Silver Spring) 19:933–938CrossRefGoogle Scholar
  2. Bailey-Downs LC, Sosnowska D, Toth P, Mitschelen M, Gautam T, Henthorn JC, Ballabh P, Koller A, Farley JA, Sonntag WE, Csiszar A, Ungvari Z (2012a) Growth hormone and igf-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging. J Gerontol A Biol Sci Med Sci 67:553–564CrossRefPubMedGoogle Scholar
  3. Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, Valcarcel-Ares MN, Farley J, Koller A, Henthorn JC, Bass C, Sonntag WE, Ungvari Z, Csiszar A (2012b) Liver-specific knockdown of igf-1 decreases vascular oxidative stress resistance by impairing the nrf2-dependent antioxidant response: a novel model of vascular aging. J Gerontol Biol Med Sci 67:313–329CrossRefGoogle Scholar
  4. Ballerini MG, Ropelato MG, Domene HM, Pennisi P, Heinrich JJ, Jasper HG (2004) Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (igf)-igf binding proteins axis. J Pediatr Endocrinol Metab 17:749–757CrossRefPubMedGoogle Scholar
  5. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675CrossRefPubMedGoogle Scholar
  6. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ (2008) Role of the gh/igf-1 axis in lifespan and healthspan: lessons from animal models. Growth Hormon IGF Res 18:455–471CrossRefGoogle Scholar
  7. Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J, Korner A, Obermayer-Pietsch B, Hubener C, Dahlgren J, Frystyk J, Pfeiffer AF, Doering A, Bielohuby M, Wallaschofski H, Arafat AM (2014) Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence igf-i immunoassay conforming to recent international recommendations. J Clin Endocrinol Metab 99:1712–1721CrossRefPubMedGoogle Scholar
  8. Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 64:819–827CrossRefPubMedGoogle Scholar
  9. Bouhours-Nouet N, Gatelais F, Boux de Casson F, Rouleau S, Coutant R (2007) The insulin-like growth factor-i response to growth hormone is increased in prepubertal children with obesity and tall stature. J Clin Endocrinol Metab 92:629–635CrossRefPubMedGoogle Scholar
  10. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33CrossRefPubMedGoogle Scholar
  11. Brown-Borg HM, Rakoczy SG, Sharma S, Bartke A (2009) Long-living growth hormone receptor knockout mice: potential mechanisms of altered stress resistance. Exp Gerontol 44:10–19CrossRefPubMedGoogle Scholar
  12. Burgers AM, Biermasz NR, Schoones JW, Pereira AM, Renehan AG, Zwahlen M, Egger M, Dekkers OM (2011) Meta-analysis and dose-response metaregression: circulating insulin-like growth factor i (igf-i) and mortality. J Clin Endocrinol Metab 96:2912–2920CrossRefPubMedGoogle Scholar
  13. Burt Solorzano CM, McCartney CR (2010) Obesity and the pubertal transition in girls and boys. Reproduction 140:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carter CS, Ramsey MM, Sonntag WE (2002a) A critical analysis of the role of growth hormone and igf-1 in aging and lifespan. Trends Genet 18:295–301CrossRefPubMedGoogle Scholar
  15. Carter CS, Ramsey MM, Ingram RL, Cashion AB, Cefalu WT, Wang ZQ, Sonntag WE (2002b) Models of growth hormone and igf-1 deficiency: applications to studies of aging processes and life-span determination. J Gerontol A Biol Sci Med Sci 57:B177–B188CrossRefPubMedGoogle Scholar
  16. Charlton HM, Clark RG, Robinson IC, Goff AE, Cox BS, Bugnon C, Bloch BA (1988) Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 119:51–58CrossRefPubMedGoogle Scholar
  17. Csiszar A, Labinskyy N, Zhao X, Hu F, Serpillon S, Huang Z, Ballabh P, Levy RJ, Hintze TH, Wolin MS, Austad SN, Podlutsky A, Ungvari Z (2007) Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 6:783–797CrossRefPubMedGoogle Scholar
  18. Csiszar A, Labinskyy N, Podlutsky A, Kaminski PM, Wolin MS, Zhang C, Mukhopadhyay P, Pacher P, Hu F, de Cabo R, Ballabh P, Ungvari Z (2008) Vasoprotective effects of resveratrol and sirt 1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol 294:H2721–H2735CrossRefPubMedPubMedCentralGoogle Scholar
  19. Csiszar A, Tucsek Z, Toth P, Sosnowska D, Gautam T, Koller A, Deak F, Sonntag WE, Ungvari ZI. Synergistic effects of hypertension and aging on cognitive function and hippocampal expression of genes involved in beta-amyloid generation and ad. Am J Physiol Heart Circ Physiol. 2013Google Scholar
  20. D'Costa AP, Ingram RL, Lenham JE, Sonntag WE (1993) The regulation and mechanisms of action of growth hormone and insulin-like growth factor 1 during normal ageing. J Reprod Fertil Suppl 46:87–98PubMedGoogle Scholar
  21. Deak F, Sonntag WE (2012) Aging, synaptic dysfunction, and insulin-like growth factor (igf)-1. J Gerontol A Biol Sci Med Sci 67:611–625CrossRefPubMedGoogle Scholar
  22. Dominick G, Bowman J, Li X, Miller RA, Garcia GG. Mtor regulates the expression of DNA damage response enzymes in long-lived snell dwarf, ghrko, and pappa-ko mice. Aging Cell 2016Google Scholar
  23. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98:6736–6741CrossRefPubMedPubMedCentralGoogle Scholar
  24. Garnett SP, Hogler W, Blades B, Baur LA, Peat J, Lee J, Cowell CT (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80:966–972PubMedGoogle Scholar
  25. Gesing A, Wiesenborn D, Do A, Menon V, Schneider A, Victoria B, Stout MB, Kopchick JJ, Bartke A, Masternak MM. A long-lived mouse lacking both growth hormone and growth hormone receptor: A new animal model for aging studies. J Gerontol A Biol Sci Med Sci 2016Google Scholar
  26. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA (2007) Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 6:1–13CrossRefPubMedGoogle Scholar
  28. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5:225–229CrossRefPubMedGoogle Scholar
  29. Haslam SZ, Schwartz RC (2011) Is there a link between a high-fat diet during puberty and breast cancer risk? Women's Health (Lond Engl) 7:1–3CrossRefGoogle Scholar
  30. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernandez-Salguero PM, Morgan WF, Deng CX, Fornace AJ Jr (1999) Genomic instability in gadd45a-deficient mice. Nat Genet 23:176–184CrossRefPubMedGoogle Scholar
  31. Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Haines DC, Fornace AJ Jr (2001) Dimethylbenzanthracene carcinogenesis in gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res 61:2487–2491PubMedGoogle Scholar
  32. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) Igf-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187CrossRefPubMedGoogle Scholar
  33. Hsieh CC, Papaconstantinou J (2009) Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ros). Aging (Albany NY) 1:784–802CrossRefGoogle Scholar
  34. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58:291–296CrossRefPubMedGoogle Scholar
  35. Johnson KJ, Springer NM, Bielinsky AK, Largaespada DA, Ross JA (2009) Developmental origins of cancer. Cancer Res 69:6375–6377CrossRefPubMedGoogle Scholar
  36. Jung HJ, Kim EH, Mun JY, Park S, Smith ML, Han SS, Seo YR (2007) Base excision DNA repair defect in gadd45a-deficient cells. Oncogene 26:7517–7525CrossRefPubMedGoogle Scholar
  37. Labinskyy N, Mukhopadhyay P, Toth J, Szalai G, Veres M, Losonczy G, Pinto JT, Pacher P, Ballabh P, Podlutsky A, Austad SN, Csiszar A, Ungvari Z (2009) Longevity is associated with increased vascular resistance to high glucose-induced oxidative stress and inflammatory gene expression in Peromyscus leucopus. Am J Physiol Heart Circ Physiol 296:H946–H956CrossRefPubMedPubMedCentralGoogle Scholar
  38. Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30:871–884CrossRefPubMedGoogle Scholar
  39. Leiser SF, Salmon AB, Miller RA (2006) Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mech Ageing Dev 127:821–829CrossRefPubMedGoogle Scholar
  40. List EO, Berryman DE, Funk K, Jara A, Kelder B, Wang F, Stout MB, Zhi X, Sun L, White TA, LeBrasseur NK, Pirtskhalava T, Tchkonia T, Jensen EA, Zhang W, Masternak MM, Kirkland JL, Miller RA, Bartke A, Kopchick JJ (2014) Liver-specific gh receptor gene-disrupted (lighrko) mice have decreased endocrine igf-i, increased local igf-i, and altered body size, body composition, and adipokine profiles. Endocrinology 155:1793–1805CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moore T, Carbajal S, Beltran L, Perkins SN, Yakar S, Leroith D, Hursting SD, Digiovanni J (2008) Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor i levels. Cancer Res 68:3680–3688CrossRefPubMedGoogle Scholar
  42. Murakami S, Salmon A, Miller RA (2003) Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J 17:1565–1566PubMedGoogle Scholar
  43. Olivo-Marston SE, Hursting SD, Lavigne J, Perkins SN, Maarouf RS, Yakar S, Harris CC (2009) Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice. Mol Carcinog 48:1071–1076CrossRefPubMedPubMedCentralGoogle Scholar
  44. Olson LK, Tan Y, Zhao Y, Aupperlee MD, Haslam SZ (2010) Pubertal exposure to high fat diet causes mouse strain-dependent alterations in mammary gland development and estrogen responsiveness. Int J Obes 34:1415–1426CrossRefGoogle Scholar
  45. Ong K, Kratzsch J, Kiess W, Dunger D (2002) Circulating igf-i levels in childhood are related to both current body composition and early postnatal growth rate. J Clin Endocrinol Metab 87:1041–1044CrossRefPubMedGoogle Scholar
  46. Osborne CK, Bolan G, Monaco ME, Lippman ME (1976) Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc Natl Acad Sci U S A 73:4536–4540CrossRefPubMedPubMedCentralGoogle Scholar
  47. Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA (2009) Mechanisms of stress resistance in snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 46:1109–1118CrossRefPubMedPubMedCentralGoogle Scholar
  48. Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM (2010) Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 24:1–7CrossRefGoogle Scholar
  49. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518CrossRefPubMedGoogle Scholar
  50. Ramsey MM, Ingram RL, Cashion AB, Ng AH, Cline JM, Parlow AF, Sonntag WE (2002) Growth hormone-deficient dwarf animals are resistant to dimethylbenzanthracine (dmba)-induced mammary carcinogenesis. Endocrinology 143:4139–4142CrossRefPubMedGoogle Scholar
  51. Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (igf)-i, igf binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353CrossRefPubMedGoogle Scholar
  52. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289:E23–E29CrossRefPubMedGoogle Scholar
  53. Salmon AB, Ljungman M, Miller RA (2008) Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J Gerontol A Biol Sci Med Sci 63:219–231CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS (1999) Pleiotropic effects of growth hormone and insulin-like growth factor (igf)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci 54:B521–B538CrossRefPubMedGoogle Scholar
  55. Sonntag WE, Lynch C, Thornton P, Khan A, Bennett S, Ingram R (2000) The effects of growth hormone and igf-1 deficiency on cerebrovascular and brain ageing. J Anat 197(Pt 4):575–585CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sonntag WE, Ramsey M, Carter CS (2005a) Growth hormone and insulin-like growth factor-1 (igf-1) and their influence on cognitive aging. Ageing Res Rev 4:195–212CrossRefPubMedGoogle Scholar
  57. Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, Chakrabarty S, Lee S, Bennett C, Ingram R, Moore T, Ramsey M (2005b) Adult-onset growth hormone and insulin-like growth factor i deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146:2920–2932CrossRefPubMedGoogle Scholar
  58. Sonntag WE, Csiszar A, de Cabo R, Ferrucci L, Ungvari Z (2012) Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies. J Gerontol A Biol Sci Med Sci 67:587–598CrossRefPubMedGoogle Scholar
  59. Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z (2013) Insulin-like growth factor-1 in cns and cerebrovascular aging. Front Aging Neurosci 5:27CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sorensen K, Aksglaede L, Petersen JH, Andersson AM, Juul A (2012) Serum igf1 and insulin levels in girls with normal and precocious puberty. Eur J Endocrinol 166:903–910CrossRefPubMedGoogle Scholar
  61. Sun LY, Bartke A (2007) Adult neurogenesis in the hippocampus of long-lived mice during aging. J Gerontol A Biol Sci Med Sci 62:117–125CrossRefPubMedGoogle Scholar
  62. Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A (2005) Local expression of gh and igf-1 in the hippocampus of gh-deficient long-lived mice. Neurobiol Aging 26:929–937CrossRefPubMedGoogle Scholar
  63. Tarantini S, Giles CB, Wren JD, Ashpole NM, Valcarcel-Ares MN, Wei JY, Sonntag WE, Ungvari Z, Csiszar A (2016a) Igf-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering mirna-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. Age (Dordr) 38:239–258CrossRefGoogle Scholar
  64. Tarantini S, Tucsek Z, Valcarcel-Ares M, Toth P, Gautam T, Giles C, Ballabh P, Wei Y, Wren J, Ashpole N, Sonntag W, Ungvari Z, Csiszar A (2016b) Circulating igf-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age (Dordr) 38:273–289CrossRefGoogle Scholar
  65. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2013) Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin ii-induced hypertension. J Cereb Blood Flow Metab 33:1732–1742CrossRefPubMedPubMedCentralGoogle Scholar
  66. Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014a) Igf-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 34:1887–1897CrossRefPubMedPubMedCentralGoogle Scholar
  67. Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014b) Igf-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 34(12):1887–1897CrossRefPubMedPubMedCentralGoogle Scholar
  68. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z (2015) Igf-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034–1044CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tucsek Z, Toth P, Sosnowsk D, Gautam T, Mitschelen M, Koller A, Szalai G, Sonntag WE, Ungvari Z, Csiszar A. Obesity in aging exacerbates blood brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and alzheimer's disease J Gerontol Biol Med Sci. 2013: in pressGoogle Scholar
  70. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, Giles CB, Wren JD, Koller A, Ballabh P, Sonntag WE, Ungvari Z, Csiszar A (2014) Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 69:1339–1352CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, Podlutsky A, Csiszar A (2007) Resveratrol increases vascular oxidative stress resistance. Am J Physiol 292:H2417–H2424Google Scholar
  72. Ungvari Z, Gautam T, Koncz P, Henthorn JC, Pinto JT, Ballabh P, Yan H, Mitschelen M, Farley J, Sonntag WE, Csiszar A (2010) Vasoprotective effects of life span-extending peripubertal gh replacement in Lewis dwarf rats. J Gerontol A Biol Sci Med Sci 65:1145–1156CrossRefPubMedGoogle Scholar
  73. Ungvari Z, Sosnowska D, Podlutsky A, Koncz P, Sonntag WE, Csiszar A (2011) Free radical production, antioxidant capacity, and oxidative stress response signatures in fibroblasts from Lewis dwarf rats: effects of life span-extending peripubertal gh treatment. J Gerontol A Biol Sci Med Sci 66:501–510CrossRefPubMedGoogle Scholar
  74. Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak F, Gautam T, Csiszar A, Sonntag WE (2013a) Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci 68:1443–1457CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ungvari Z, Sosnowska D, Mason JB, Gruber H, Lee SW, Schwartz TS, Brown MK, Storm NJ, Fortney K, Sowa J, Byrne AB, Kurz T, Levy E, Sonntag WE, Austad SN, Csiszar A, Ridgway I (2013b) Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A Biol Sci Med Sci 68:521–529CrossRefPubMedGoogle Scholar
  76. Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA (2004) Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci 59:1244–1250CrossRefPubMedPubMedCentralGoogle Scholar
  77. Walker CL, Ho SM (2012) Developmental reprogramming of cancer susceptibility. Nat Rev Cancer 12:479–486CrossRefPubMedGoogle Scholar
  78. Warrington JP, Csiszar A, Johnson DA, Herman TS, Ahmad S, Lee YW, Sonntag WE (2011) Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. Am J Physiol Heart Circ Physiol 300:H736–H744CrossRefPubMedGoogle Scholar
  79. Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE (2012) Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 7:–e30444Google Scholar
  80. Wu Y, Cui K, Miyoshi K, Hennighausen L, Green JE, Setser J, LeRoith D, Yakar S (2003) Reduced circulating insulin-like growth factor i levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res 63:4384–4388PubMedGoogle Scholar
  81. Yakar S, Pennisi P, Zhao H, Zhang Y, LeRoith D (2004) Circulating igf-1 and its role in cancer: lessons from the igf-1 gene deletion (lid) mouse. Novartis Found Symp 262:3–9 discussion 9-18, 265-268CrossRefPubMedGoogle Scholar
  82. Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, Warrington JP, Han S, Fung KM, Csiszar A, Ungvari Z, Sonntag WE (2014) Endothelin-1-induced focal cerebral ischemia in the growth hormone/igf-1 deficient Lewis dwarf rat. J Gerontol A Biol Sci Med Sci 69:1353–1362CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhao Y, Tan YS, Aupperlee MD, Langohr IM, Kirk EL, Troester MA, Schwartz RC, Haslam SZ (2013) Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res 15:R100CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2017

Authors and Affiliations

  • Andrej Podlutsky
    • 1
    • 2
  • Marta Noa Valcarcel-Ares
    • 1
  • Krysta Yancey
    • 2
  • Viktorija Podlutskaya
    • 2
  • Eszter Nagykaldi
    • 1
  • Tripti Gautam
    • 1
  • Richard A. Miller
    • 3
    • 4
  • William E. Sonntag
    • 1
  • Anna Csiszar
    • 1
    • 5
  • Zoltan Ungvari
    • 1
    • 5
  1. 1.Department of Geriatric MedicineReynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Biology and WildlifeCenter for Alaska Native Health Research, University of Alaska FairbanksFairbanksUSA
  3. 3.Department of PathologyUniversity of MichiganAnn ArborUSA
  4. 4.University of Michigan Geriatrics CenterAnn ArborUSA
  5. 5.Department of Medical Physics and InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations