Skip to main content

Advertisement

Log in

Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration

  • Review Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Astaxanthin (AXT) is a carotenoid with multiple health benefits. It is currently marketed as a health supplement and is well known for its antioxidant capacity. Recent evidence has emerged to suggest a broad range of biological activities. The interest in this compound has increased dramatically over the last few years and many studies are now applying this molecule across many disease models. Results from the current research are beginning to come together to suggest neuroprotective properties including anti-inflammatory, anti-apoptotic, and antioxidant effects, as well as the potential to promote or maintain neural plasticity. These emergent mechanisms of actions implicate AXT as a promising therapeutic agent for neurodegenerative disease. This review will examine and extrapolate from the recent literature to build support for the use of AXT in mitigating neuropathy in normal aging and neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie-Guedes R, Santos SD, Cahu TB, Guedes RC, de Souza Bezerra R (2008) Dose-dependent effects of astaxanthin on cortical spreading depression in chronically ethanol-treated adult rats. Alcohol Clin Exp Res 32:1417–1421

  • Acosta S, Jernberg J, Sanberg C, Sanberg P, Small BJ, Gemma C, Bickford PC (2010) NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat. Rejuvenation Res 13:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Amin MM, Akhter S, Hasan AT, Alam T, Hasan SN, Saifullah A, Shohel M (2015a) The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain. Metab Brain Dis 30:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Al-Amin MM, Rahman MM, Khan FR, Zaman F, Mahmud Reza H (2015b) Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 286:112–121. doi:10.1016/j.bbr.2015.02.041

    Article  CAS  PubMed  Google Scholar 

  • Al-Amin MM et al (2016a) Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. Eur J Pharmacol 777:60–69

    Article  CAS  PubMed  Google Scholar 

  • Al-Amin MM, Sultana R, Sultana S, Rahman MM, Reza HM (2016b) Astaxanthin ameliorates prenatal LPS-exposed behavioral deficits and oxidative stress in adult offspring BMC neuroscience 17:1

  • Ambati RR, Phang S-M, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs 12:128–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Arvanitakis Z, Fleischman DA, Arfanakis K, Leurgans SE, Barnes LL, Bennett DA (2016) Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct 221:2135–2146. doi:10.1007/s00429-015-1034-7

    Article  PubMed  Google Scholar 

  • Bachstetter AD et al (2010) Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One 5:e10496

    Article  PubMed  PubMed Central  Google Scholar 

  • Balietti M et al (2016) The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation. J Sci Food Agric 96:615–618

    Article  PubMed  Google Scholar 

  • Barros MP, Poppe SC, Bondan EF (2014) Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 6:1293–1317

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickford PC et al (2015) Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells. Age 37:1–7

    Article  CAS  Google Scholar 

  • Bosman G, Bartholomeus I, De Man A, Van Kalmthout P, De Grip W (1991) Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer’s disease. Neurobiol Aging 12:13–18

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Bing W, Yuan J-P, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12:145–152. doi:10.1007/s13749-013-0051-5

    Article  CAS  Google Scholar 

  • Chang C-H, Chen C-Y, Chiou J-Y, Peng RY, Peng C-H (2010) Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25–35: its molecular action targets. J Med Food 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Chew BP, Mathison BD, Hayek MG, Massimino S, Reinhart GA, Park JS (2011) Dietary astaxanthin enhances immune response in dogs. Vet Immunol Immunopathol 140:199–206

    Article  CAS  PubMed  Google Scholar 

  • Choi HD, Kang HE, Yang SH, Lee MG, Shin WG (2011) Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br J Nutr 105:220–227

    Article  CAS  PubMed  Google Scholar 

  • Choi S-K, Park Y-S, Choi D-K, Chang H-I (2008) Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J Microbiol Biotechnol 18:1990–1996

    CAS  PubMed  Google Scholar 

  • Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci 100:13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Furr HC, Clark RM (1997) Intestinal absorption and tissue distribution of carotenoids. J Nutr Biochem 8:364–377

    Article  CAS  Google Scholar 

  • Giavarotti L et al. (2013) Mild systemic oxidative stress in the subclinical stage of Alzheimer’s disease Oxidative medicine and cellular longevity

  • Glisky EL (2007) Changes in cognitive function in human aging brain aging: models, methods, and mechanisms:3–20

  • Goodall H, Reid A, Findlay D, Hind C, Kay J, Coghill G (1994) Irregular distortion of the erythrocytes (acanthocytes, spur cells) in senile dementia. Dis Markers 12:23–41

    Article  CAS  PubMed  Google Scholar 

  • Grimmig B, Morganti J, Nash K, Bickford PC (2016) Immunomodulators as therapeutic agents in mitigating the progression of Parkinson’s disease brain. Sciences 6:41

    Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Haider S et al (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 36:1291–1302

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  PubMed  Google Scholar 

  • Hussein G, Nakamura M, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H (2005) Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol Pharm Bull 28:47–52

    Article  CAS  PubMed  Google Scholar 

  • Jackson H, Braun CL, Ernst H (2008) The chemistry of novel xanthophyll carotenoids. Am J Cardiol 101:S50–S57. doi:10.1016/j.amjcard.2008.02.008

    Article  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:161S–170S

    Article  Google Scholar 

  • Katagiri M, Satoh A, Tsuji S, Shirasawa T (2012) Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study. J Clin Biochem Nutr 51:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto EM et al (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto EM, Vasconcelos AR, Degaspari S, Böhmer AE, Scavone C, Marcourakis T (2013) Age-related changes in nitric oxide activity, cyclic GMP, and TBARS levels in platelets and erythrocytes reflect the oxidative status in central nervous system. Age 35:331–342

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kidd P (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16:355–364

    PubMed  Google Scholar 

  • Kim J-H et al (2009) Astaxanthin inhibits H, O,-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways. J Microbiol Biotechnol 19:1355–1363

    CAS  PubMed  Google Scholar 

  • Kim J-H, Kim Y-S, Song G-G, Park J-J, Chang H-I (2005) Protective effect of astaxanthin on naproxen-induced gastric antral ulceration in rats. Eur J Pharmacol 514:53–59

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Nam S-W, Kim B-W, Choi W, Lee J-H, Kim W-J, Choi Y-H (2010a) Astaxanthin improves stem cell potency via an increase in the proliferation of neural progenitor cells. Int J Mol Sci 11:5109–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Koh HK, Kim DS (2010b) Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-kappaB-mediated signals in activated microglia. Int Immunopharmacol 10:1560–1572

    Article  CAS  PubMed  Google Scholar 

  • Komaki A, Karimi SA, Salehi I, Sarihi A, Shahidi S, Zarei M (2015) The treatment combination of vitamins E and C and astaxanthin prevents high-fat diet induced memory deficits in rats. Pharmacol Biochem Behav 131:98–103

  • Kosenko E, Tikhonova L, Poghosyan A, Kaminsky Y (2013) Antioxidants in erythrocytes in aging and dementia. Biomeditsinskaya khimiya 59:443–451

  • Koutsilieri E, Scheller C, Tribl F, Riederer P (2002) Degeneration of neuronal cells due to oxidative stress—microglial contribution. Parkinsonism Relat Disord 8:401–406

    Article  CAS  PubMed  Google Scholar 

  • Lee D-H, Lee YJ, Kwon KH (2010) Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr 47:121–129

  • Lee D-H, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP + −induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al. (2013) Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt

  • Liu X, Luo Q, Cao Y, Goulette T, Liu X, Xiao H (2016) Mechanism of different stereoisomeric astaxanthin in resistance to oxidative stress in Caenorhabditis elegans. J Food Sci

  • Liu X, Shibata T, Hisaka S, Osawa T (2009a) Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Res 1254:18–27. doi:10.1016/j.brainres.2008.11.076

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Shibata T, Hisaka S, Osawa T (2009b) Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Res 13:18–27

    Article  Google Scholar 

  • Lobos P et al (2016) Astaxanthin protects primary hippocampal neurons against noxious effects of Abeta-oligomers. Neural Plast 3456783:1

    Article  Google Scholar 

  • Lu Y et al (2015) Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus. Neurosci Lett 597:49–53

    Article  CAS  PubMed  Google Scholar 

  • Lynch MA (2009) Age-related neuroinflammatory changes negatively impact on neuronal function

  • Naguib YM (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kiko T, Miyazawa T, Burdeos GC, Kimura F, Satoh A, Miyazawa T (2011) Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. Br J Nutr 105:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KD (2013) Astaxanthin: a comparative case of synthetic vs. natural production

  • Mattei R, Polotow TG, Vardaris CV, Guerra BA, Leite JR, Otton R, Barros MP (2011) Astaxanthin limits fish oil-related oxidative insult in the anterior forebrain of Wistar rats: putative anxiolytic effects? Pharmacol Biochem Behav 99:349–355

  • Odeberg JM, Lignell Å, Pettersson A, Höglund P (2003) Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur J Pharm Sci 19:299–304

    Article  Google Scholar 

  • Østerlie M, Bjerkeng B, Liaaen-Jensen S (2000) Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin1. J Nutr Biochem 11:482–490. doi:10.1016/S0955-2863(00)00104-2

    Article  PubMed  Google Scholar 

  • Otton R, Marin DP, Bolin AP, dos Santos RD, Polotow TG, Sampaio SC, de Barros MP (2010) Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem Biol Interact 186:306–315

    Article  CAS  PubMed  Google Scholar 

  • Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190 doi:10.1016/j.algal.2016.06.007

  • Park SK, Kim K, Page GP, Allison DB, Weindruch R, Prolla TA (2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging cell 8:484–495

  • Park J, Mathison B, Hayek M, Zhang J, Reinhart G, Chew B (2013) Astaxanthin modulates age-associated mitochondrial dysfunction in healthy dogs. J Anim Sci 91:268–275

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Zhang Y, Zhang J, Wang H, Ren B (2010) ERK in learning and memory: a review of recent research. Int J Mol Sci 11:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polich J, Ehlers CL, Otis S, Mandell AJ, Bloom FE (1986) P300 latency reflects the degree of cognitive decline in dementing illness. Electroencephalogr Clin Neurophysiol 63:138–144

    Article  CAS  PubMed  Google Scholar 

  • Puertas M, Martinez-Martos J, Cobo M, Carrera M, Mayas M, Ramirez-Exposito M (2012) Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp Gerontol 47:625–630

    Article  CAS  PubMed  Google Scholar 

  • Régnier P et al (2015) Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Marine drugs 13:2857–2874

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahay A et al (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh A et al (2009a) Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr 44:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh A et al (2009b) Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr 44:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seabra LMAJ, LFC P (2010) Astaxanthin: structural and functional aspects. Rev Nutr 23:1041–1050

    Article  CAS  Google Scholar 

  • Shen H et al (2009) Astaxanthin reduces ischemic brain injury in adult rats. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 23:1958–1968

  • Shetty GA, Hattiangady B, Shetty AK (2013) Neural stem cell-and neurogenesis-related gene expression profiles in the young and aged dentate gyrus. Age 35:2165–2176

    Article  PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Mattson MP (2012) Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci 13:209–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B (2016) Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. Age 38:393–404

    Article  CAS  PubMed  Google Scholar 

  • Wahl D et al (2016) Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 31:80–92

    Article  CAS  PubMed  Google Scholar 

  • Wang H-Q, Sun X-B, Xu Y-X, Zhao H, Zhu Q-Y, Zhu C-Q (2010) Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res 1360:159–167

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain Frontiers in aging neuroscience 2:12

  • Wibrand K, Berge K, Messaoudi M, Duffaud A, Panja D, Bramham CR, Burri L (2013) Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis 12:12–16

    Article  Google Scholar 

  • Woodside JV, McGrath AJ, Lyner N, MC MK (2015) Carotenoids and health in older people. Maturitas 80:63–68

    Article  CAS  PubMed  Google Scholar 

  • Wu W et al (2014) Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct 5:158–166

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhu J, Yin W, Ding X (2015) Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat Int J. Clin Exp Pathol 8:6083–6094

    Google Scholar 

  • Ye Q, Huang B, Zhang X, Zhu Y, Chen X (2012) Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis BMC. Neurosci 13:1471–2202

    Google Scholar 

  • Yook JS et al (2016) Astaxanthin supplementation enhances adult hippocampal neurogenesis and spatial memory in mice. Mol Nutr Food Res 60:589–599

    Article  CAS  PubMed  Google Scholar 

  • Yuan J-P, Chen F, Liu X, Li X-Z (2002) Carotenoid composition in the green microalga. Chlorococcum Food Chemistry 76:319–325

    Article  CAS  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ Geochem Health 29:483–489. doi:10.1007/s10653-007-9117-x

    Article  PubMed  Google Scholar 

  • Zhang XS et al (2014a) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192:206–213

  • Zhang XS et al (2014b) Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling. Mar Drugs 12:4291–4310

  • Zhang XS et al (2014c) Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. Journal of Neurosurgery 121:42–54

  • Zhou X et al (2015) Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiol Behav 151:412–420

Download references

Author’s contributions

BG, SHK, KN, PCB, and RDS contributed to the writing and revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Bickford.

Ethics declarations

Conflict of interest

PCB is a member of the scientific advisory board for Nutrex, Hawaii; RDS was awarded funding from manufactures of AXT supplements.

Funding

Grant support: VA MRS grants I01BX003421; I01BX000231 (PCB); NIH R01AG044919 (PCB).

Disclaimer

The content of this article does not represent the views of the VA or the government of the USA.

Additional information

Bethany Grimmig and Seol-Hee Kim contributed equally to this work

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimmig, B., Kim, SH., Nash, K. et al. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience 39, 19–32 (2017). https://doi.org/10.1007/s11357-017-9958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-017-9958-x

Keywords

Navigation